
IEEE TRANSACTIONS OF BIG DATA, LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2024 1

Scaling Frustration Index and Balanced State
Discovery for Real Signed Graphs

Muhieddine Shebaro, Student Member, IEEE and Jelena Tešić, Senior Member, IEEE

Abstract—Structural balance modeling for signed graph net-
works presents how to model the sources of conflicts. The state-
of-the-art focuses on computing the frustration index of a signed
graph, a critical step toward solving problems in social and sensor
networks and scientific modeling. The proposed approaches do
not scale to large signed networks of tens of millions of vertices
and edges. In this paper, we propose two efficient algorithms, a
tree-based graphBpp and a gradient descent-based graphL. We
show that both algorithms outperform state-of-art in terms of
efficiency and effectiveness for discovering the balanced state for
any size of the network. We introduce the first comparison for
large graphs for the exact, tree-based, and gradient descent-based
methods. The speedup of the methods is around 300+ times faster
than the state-of-the-art for large signed graphs. We find that the
exact method excels at optimally finding the frustration for small
graphs only. graphBpp scales this approximation to large signed
graphs at the cost of accuracy. graphL produces a state with
a lower frustration at the cost of selecting a proper variable
initialization and hyperparameter tuning.

Index Terms—frustration index, balanced states, signed
graphs, scaling, in-memory

I. INTRODUCTION

UNSTRUCTURED data requires a rich graph represen-
tation. The signed networks can model complex rela-

tionships with negative and positive edges and lack of an
edge. Social dynamics and stability concerning friendship and
enmity in more depth [1], [2] as well as brain behavior [3]
were modeled using signed network analysis. The challenge
right now is the size of the signed graph benchmarks [4], [5]
and the complexity of the existing methods [6]: the proof of
concepts for narrow-band tasks in finance [7], polypharmacy
[8], bioinformatics [9], and sensor data analysis [10], [11] are
simply too small to be deployed for modern networks and
datasets and make assumptions that are not applicable in real
signed networks [6], [12]. A salient metric in signed graphs
is the frustration index, and finding it is NP-hard [7]. The
frustration index quantifies the degree to which a signed graph
deviates from a state of balance. When each cycle in the signed
graph contains an even number of negative edges, the signed
graph is balanced. The frustration index is also the count of
edge sign alterations required to ensure that no cycle contains
an odd number of negative edges. This interpretation provides
a practical way to understand and apply the concept of the
frustration index in signed network analysis.

M. Shebaro and J. Tešić are with the Department of Computer Science,
Texas State University, San Marcos, TX, USA 78666.
E-mail: m.shebaro, jtesic@txstate.edu

Manuscript received April 19, 2024; revised June 28, 2024.

In this paper, we focus on scaling the computation of the
frustration index and the associated balanced state for large
signed networks. We propose a novel and efficient tree-based
method, graphBpp, and a loss optimization method, graphL.
We demonstrate the proof-of-concept on large (millions of
vertices and edges) signed graphs derived from the actual data.

Balance theory represents a theory of changes in attitudes
[13]: people’s attitudes evolve in networks so that friends of
a friend will likely become friends, and so will enemies of
an enemy [13]. Heider established the foundation for social
balance theory [14], and Harary established the mathematical
foundation for signed graphs and introduced the k-way balance
[15], [16].

The balanced-theory-based algorithms helped solve the
tasks of predicting edge sentiment, recommending content
and products, and identifying unusual trends [17]–[20]. The
frustration index is one measure of network property in many
scientific disciplines, that is, in chemistry [21], biology [22],
brain studies [23], physical chemistry [24] and control [25].
Finding the maximum cut of the graph in a particular case of
all opposing edges is equivalent to the calculation of the frus-
tration index [26]. The authors showed that the process is NP-
hard [26]. State-of-the-art methods address the computation
of the frustration index for signed graphs with up to 100,000
vertices [27], and the approach does not scale to modern large
signed networks with tens of millions of vertices and edges.
Signed networks can have multiple nearest-balanced states,
and graphB algorithm [28] implements the first approach to
scale Algorithm 1. Nearest Balanced states S are a subset
of all possible balanced states of a signed graph in which
graphB produces these states by a minimal number of edge
sign changes using a tree-sampling method. In other words,
the algorithm always produces this subset of balanced states
by avoiding the tedious calculations of finding all balanced
states, some of which are only present by passing through
another balanced state [28]. We designate S(i) to indicate
the ith nearest balanced state produced by graphB in the ith

iteration. In the for loop in line 1, the algorithm loops over k
sampled spanning trees instead of all trees(Algorithm 2 line
1). Next, the graphB+ algorithm scaled the computation of
fundamental cycles for the spanning tree T in Algorithm 1. If
T is a spanning tree of Σ and e is an edge of Σ that does not
belong to T , then fundamental Cycle Ce, defined by e, is the
cycle consisting of e together with the straightforward path in
T connecting the endpoints of e. If |V | denotes the number of
vertices and |E| the number of edges in Σ, there are precise
|E| − (|V | − 1) fundamental cycles, one for each edge that

0000–0000/00$00.00 © 2024 IEEE

IEEE TRANSACTIONS OF BIG DATA, LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2024 2

(b)(a)

Fig. 1. (a) Unsigned graph G with 4 vertices and 5 edges; (b) Eight possible edge sign combinations for G (signed graphs Σ).

does not belong to T . Each Ce is linearly independent of the
remaining cycles because it includes an edge e not present in
any other fundamental process.

The graphB+ algorithm [29] efficiently discovers funda-
mental cycles for the spanning tree T and computes vertex
and edge labels with linear time complexity. The algorithm
requires a linear amount of memory, and the running time for
balancing a cycle is linear in the length of the cycle times
the vertex degrees but independent of the size of the graph.
The labels here are specific values assigned to the vertices
and edges after sampling a spanning tree as a preliminary
step prior to finding and traversing the fundamental cycles
and balancing them. These labels aid in finding these cycles
and ensure efficient traversal. The algorithm speeds up the
balancing to more than 14 million identified, traversed, and
balanced fundamental cycles. Next, the algorithm traverses
or visits each cycle in a specific order and takes note of
which edge signs switched within each cycle to obtain an
even number of negative edges along that cycle. We define the
memory-bound frustration cloud as a container that contains
a collection of nearest balanced states for a signed graph,
restricted in size based on the computer’s random access
memory. Figure 1 shows eight examples of balanced states
for an unsigned graph with four vertices and five edges. We
can observe that every cycle in each of the states contains an
even number of negative edges. The contributions are:
• We extend the frustration cloud from a set in [28] to a
(key, value) tuple collection F Sigma = B:(C,S). We store the
nearest balanced states with their associated frequency and
edge switches as a tuple in the memory-bound frustrated cloud.
• We propose graphBpp, a robust improvement over previous
tree balancing algorithms [30] for finding the nearest balanced
frustration state and index for any real-world signed network of
any size or density with time complexity O(|Tk|∗|E|∗log(|V |∗
d)), where |E| is the number of edges, |V | is the number
of vertices, and d is the average spanning-tree degree of the
vertices on each cycle, and |Tk| is the number of spanning-
trees generated. We analyze the algorithmic effectiveness in
Section IV-A and demonstrate its scalability and efficiency
over the state-of-the-art exact method in the literature in
Section VII.
• We propose graphL, a gradient descent algorithm that
produces a more optimal balanced state with a lower index
than graphBpp in linear time. We analyze the algorithmic
effectiveness in Section V-A and demonstrate its scalability
and efficiency over the state-of-the-art exact method in the
literature in Section VIII.
• We propose the tree-sampling method and heuristics and
confirm it with the benchmark comparison of seven spanning

tree-sampling methods, frustration index computation, and
timing for networks with tens of millions of nodes. To the
best of our knowledge, this marks the first instance where
exact, tree-based, and gradient descent-based methods are
evaluated and directly compared in terms of their effectiveness
in estimating the frustration index.

II. DEFINITIONS AND COROLLARIES

A. Fundamental Cycle Basis

Definition 2.1: Path is a sequence of distinct edges m
that connect a sequence of distinct vertices n in a graph.
Connected graph has a path that joins any two vertices. Cycle
is a path that begins and ends at the same node.Simple Cycle
is a route that begins and concludes at an identical vertex, and
it doesn’t pass through any other vertex more than one time.
Cycle Basis is a set of simple cycles that forms a basis of the
cycle space.

Definition 2.2: For the underlying graph G, let T be the
spanning tree of G, and let an edge m be an edge in G
between vertices x and y that is NOT in the spanning tree
T . Since the spanning tree spans all vertices, a unique path in
T exists between vertices x and y, which does not include m.
A Fundamental Cycle is a cycle that combines a path in the
tree T and an edge m from the graph G. The cycles, denoted
as ci, are considered fundamental if they include precisely one
edge that is not part of the tree. They are a collection of cycles
capable of generating all possible cycles in a graph through a
linear combination of its members, which is determined based
on a spanning tree. For instance, the cycles 0-1-2 and 0-3-2
in Figure 1 are fundamental cycles and they can generate a
larger cycle 0-1-2-3, that is not a fundamental cycle.

Corollary 2.1: A fundamental cycle basis can be derived
from a spanning tree or spanning forest of the given graph
by selecting the cycles formed by combining a path in the
tree and a single edge outside the tree. For the graph G with
N vertices and M edges, there are precisely M − N + 1
fundamental cycles for each connected component.

B. Balanced Graphs and Frustration

Definition 2.3: Signed graph Σ = (G, σ, V,E) consists of
underlying unsigned graph G and an edge signing function
σ : m → {+1,−1}. The edge m can be positive m+ or
negative m−. Fully Signed Graph is a signed graph with
vertex signs (assigned +1 or -1) [31]. Sign of a sub-graph
is the product of the edges signs. Balanced Signed graph
is a signed graph where every cycle is positive. Frustration
of a signed graph (Fr) is defined as the number of candidate
edges whose sign needs to be switched for the graph to reach

IEEE TRANSACTIONS OF BIG DATA, LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2024 3

(a)

𝜮
(b)

𝜮𝟏
′𝜮𝟏

′
𝜮𝟐
′ 𝜮𝟏

′ 𝜮𝟑
′ 𝜮𝟒

′ 𝜮𝟏
′ 𝜮𝟓

′

Fig. 2. (a) Signed graph Σ (b) Near-balanced states of Σ, Σ′
i : i ∈ [1, 5] where blue lines illustrate the spanning tree and yellow signs note the edge sign

change in Algorithm 1. If a fundamental cycle contains an odd number of negative edges, sign switching occurs on non-tree edges (non-blue edges) to balance
the signed network.

a balanced state. Frustration Cloud contains a collection of
nearest balanced states for a particular signed graph.

Definition 2.4: A balanced state is optimal if and only if
it requires a minimum number of edge sign switches in the
original graph to reach a balanced state.

Theorem 2.1 ([15]): If a signed subgraph Σ′ is balanced,
the following are equivalent:

1) Σ′ is balanced. (All circles are positive.)
2) For every vertex pair (ni, nj) in Σ′, all (ni, nj)-paths

have the same sign.
3) Fr(Σ′) = 0.
4) There exists a bipartition of the vertex set into sets U

and W such that an edge is negative if, and only if,
it has one vertex in U and one in W . The bipartition
(U ,W) is called the Harary-bipartition.

In this paper, Section III summarizes related work and state-
of-the-art in the field. We introduce a balancing algorithmic
improvements for approximating the frustration index as the
graphBpp algorithm or graphB++ in Section IV. We introduce
the gradient descent-based heuristic for finding the frustration
index and the novel loss function in the graphL algorithm
in Section V. We assess the effectiveness and efficiency of
graphBpp in Section VII, and of graphL in Section VIII,
and compare and contrast them with state-of-art using real-
world signed graph benchmarks [5], [32]. In Section IX, we
summarize our findings.

III. RELATED WORK

Frustration index computation has various applications in
bioinformatics, engineering, and science, and the only existing
open-source code for calculating the frustration index is the
Binary Linear Programming (BLP) [7].
Frustration Applications: In chemistry, the stability of
fullerenes is related to the frustration index [21]. The frus-
tration index measures how an incoherent system responds to
perturbations in large-scale signed biological networks [22].
The frustration of the network has been determining the
strength of agent commitment to make a decision and win
the disorder in adversarial multi-agent networks [25]. In these
networks, the strength is determined by measuring the social
commitment of agents, particularly when there are disorder
or adversarial actions. Winning the disorder is the process of
overcoming the chaos caused by frustration in the network.
The frustration arises from the mix of collaborative and antag-
onistic interactions, leading to an unbalanced signed graph. To
overcome this disorder and make significant decisions, agents

need a high level of social commitment. Moreover, frustration
in neuroplasticity assesses the development of brain networks,
as studies have shown that a person’s cognitive performance
and the frustration of the brain network have a negative
correlation [23]. Physical chemists predict the protein-protein
interaction using the frustration index of the protein signed
network [24]. Saberi et al. investigated the pattern for the
formation of frustrating connections in different brain regions
during multiple life stages [33].
Computing the Frustration Index: Researchers have focused
on calculating the exact frustration index. Calculating the frus-
tration index is an NP-hard problem equivalent to calculating
the ground state of the spin glass model on unstructured graphs
[34]. The frustration index for small fullerene graphs can be
calculated in polynomial time [35], and the finding was used to
estimate the genetic algorithm of the frustration index in [21].
Bansal et al. introduced the correlation clustering problem,
which is a problem in computing the minimum number of
frustrated edges for several subsets [36]. Aref et al. provided an
exact algorithm to calculate the partial balance and frustration
index with O((2b)|E|2) complexity where b is a fixed parame-
ter, and |E| is the number of edges [7]. Recent improvements
in the algorithm include binary programming models and the
use of multiple powerful mathematical solvers by Gurobi [37],
and the algorithm can handle up to |E| = 100, 000 edges and
compute the frustration index of the network in 10 hours [27].
The integer and binary programming models are known to
be slow, computationally expensive, and have a huge search
space for large problems. They might output an approximate
solution to the problem, but that doesn’t necessarily mean they
are better than a heuristic approach that is much faster and
scalable. The use of a parallel genetic algorithm for solving
large integer programming models [38] does not scale as the
authors postulate that as these models grow, the efficiency
decreases greatly, making it impossible to have any output,
and we demonstrate this in experiments.
Gradient Descent in Signed Networks: Tang et al. [39] pro-
pose a statistically principled latent space approach for mod-
eling signed networks and accommodating the well-known
balance theory. They build a balanced inner-product model
that has three different kinds of latent variables to optimize:
vertex degree heterogeneity α vector of size n, z vector of size
n, which encodes for the latent position, and the latent polar
variable vector q of size n in which it encodes the placement
of the vertices in one of the two Harary subsets. They model
the distribution of signs through their product, which satisfies

IEEE TRANSACTIONS OF BIG DATA, LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2024 4

the balance. An edge between two vertices will likely have
a positive sign when their latent variables qi and qj have the
same sign and a negative sign otherwise. Finally, they propose
a loss function to minimize and find the optimal polar variable
values using the projected gradient descent. They present the
error rates for these estimates using simulation studies.

In our work, we introduce one balancing-based approach
and one frustration-based approach. The methodology is to
first scale the approximation of the frustration index by in-
troducing a more efficient tree-based approach in Section IV
and to introduce a gradient descent-based heuristic for further
optimizing the frustration index computation in Section V.

IV. THE GRAPHBPP, GRAPH BALANCING
METHODOLOGY

In this section, we propose the improved graph balancing
algorithm, the graphBpp algorithm. The graphBpp extends
the fundamental cycle algorithm graphB+ we have proposed
earlier in [29] to approximate the frustration index Fr for a
signed graph Σ as Fr Sigma using a particular tree-sampling
technique. Note that we focus on the tree sampling tree
selection for graphBpp for minimizing the index in subsec-
tion VII-2).

FrΣ = mini(S(I)) (1)

The objective function for approximating frustration index is
outlined in Eq. 1, and S is a container that stores the number
of edge sign switches for a given ith nearest balanced state.

Algorithm 1 Tree-Based Signed Graph Balancing
1: Input signed graph Σ and spanning tree T of Σ
2: for Edges e, e ∈ Σ \ T do
3: if fundamental cycle T ∪ e is negative then
4: Flip edge sign for edge e: e− → e+; e+ → e−

5: end if
6: end for
7: Return balanced graph Σ′

T

The graphB+ is an efficient algorithm alternative for com-
puting the fundamental cycles [29]. The graphBpp algorithm
builds on the graphB [28] and graphB+ [29] as it combines the
efficiency of graphB+ with the functionality of graphB. The
graphBpp integrates different tree-sampling approaches, as
outlined in Algorithm 2 for the frustration index computation.
Next, the graphBpp algorithm scales the calculation of the
frustration index and associated optimal balanced state by
iteratively keeping in memory only the subset of nearest
balanced states with the smallest number of edge negations, as
outlined in Algorithm 3. The graphBpp finds the approximate
frustration index and the nearest balanced state associated with
the index for any large signed graph.

We extend the definition of frustration cloud FΣ from a set
to a (key,value) tuple collection FΣ = B:(C,S). The key is
the unique balanced state B(i), and the value is the count of
balanced states occurring in iteration C(i), and the edge count
switches to the balanced state S(i). In each balancing iteration,
we examine the resulting balance state (Algorithm 2) Σ′

T in

Algorithm 2 Tree-Based Graph Balancing and Frustration
Index (Non-scalable Version for Small and Medium-Sized
Graphs)

1: Input signed graph Σ and spanning trees sampling method
M

2: Generate set TMk of k spanning trees of Σ using M
3: Empty FΣ (frustration cloud of nearest balanced states)
4: for spanning trees T , T ∈ Tk where Tk is a set of k

spanning trees of Σ do
5: Find nearest balanced state Σ′

i using Algorithm 1
6: s = edge signs difference count from Σ to Σ′

i

7: Transform Σ′
i balanced state to string B

8: if B /∈ B then
9: Add key B to B

10: S(B) = s
11: C(B) = 1
12: else
13: C(B)++
14: end if
15: end for
16: Return frustration index Fr(Σ) = mini(S) and frustration

cloud FΣ = B:(C,S)

relation to B. We represent the balanced state Σ′
T as a string

B to make the process more efficient. The balanced state Σ′
T

represents the three edge vectors (src, tgt, sign). If an edge i
is defined by two vertices (u, v) and a sign s, the algorithm
balances the graph and stores the edges as src(i)=u, tgt(i)=v,
sign(i)=s. The number of edge sign switches for each iteration
of the graphBpp algorithm is counted by comparing Σ with the
produced balanced state Σ′

i in Alg 1, and the value is stored
in S(i)) for the ith iteration. Thus, by choosing the nearest
balanced state with the lowest number of edge sign switches,
we can approximate the frustration index with the lowest
value available from the tree sampling. Next, we introduce
the update to the frustration cloud [28] to be memory-bound,
and we define the new frustration cloud F Sigma in Eq. 2.

FΣ = (B(i), C(i),S(i)), i ≤ Fmax (2)

In equation 2, the B(i) is a container for storing the ith

balanced state, C(i) is a container for saving the number of ith

balanced state produced, and S(i) is the number of the edge
switches to achieve the ith balanced state from Σ. The Fmax

represents the number of balanced states where a memory limit
is reached during the frustration cloud creation. Figure 2 all
the nearest balanced states produced by graphBpp.

For graphBpp implementation, we propose an efficient
transform (O(|E|)) of the balanced state output Σ′ to the string
hash key B for comparison with other balanced states, as out-
lined in Algorithm 2 line 5. The triple edge vector (src(i),tgt(i),
sign(i)) is inserted into a set of tuple data structures to organize
the edges and prepare for string conversion automatically.
Then, it is transformed to a string format ”src(i)− >tgt(i):
sign(i),” and then all edge strings are concatenated in order,
separated by the delimiter ”|” and stored as the B key in B. If
B is in B, we increase the corresponding C(B) value count,
where B is the existing balanced state Σ′

T . If Σ′
T is not in

IEEE TRANSACTIONS OF BIG DATA, LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2024 5

B, we add (Σ′
i,(1,number of switched edge signs) pair to the

collection. If the state was previously unseen, we add the new
balanced state to the hashmap as a string key as illustrated
in Algorithm 2. Then, we add 1 to the end of the count
stack C and add the number of edge switches in the graph
for this balanced state to the frustration cloud frequency stack
S. These two values (count stack and frequency stack) are
stored as a pair, and the value of the hashmap of the balanced
state string as a key is that pair. If the balanced state exists
in B, we increase the count at the same string key in C only
(the first element of the pair is modified), as illustrated in
Algorithm 2. The minimum number of edge switches in all
balanced states approximates the frustration index, and we
approximate the frustration index as Fr(Σ) = min(S). The size
of the frustration cloud grows with the number of iterations
as the probability of the previously unseen nearest balanced
state grows. The size of the frustration cloud can become
an issue for graphs with millions of vertices and vertices as
the frustration cloud is too big for the main memory. The
underlying data structure for the implementation in C++ is
std :: map < std :: string, std :: pair < int, int >>. The
key, as discussed above, is of type string that represents a
balanced state, and the pair stores two integers, one for the
number of switches and the other for the frequency of the
corresponding stable state. The string keys are indeed slower
than using integer key types in the map data structure in
regards to comparing keys. However, in our case, storing the
balanced states using strings or integers should have a similar
comparison performance, and the integer key approach would
be much more complicated. First, if we use std :: map <
int, std :: pair < int, int >>, then it would be difficult
and more complex to represent the signed network using one
integer key, whereas the string can intuitively concatenate all
the edges with their signs to represent that graph. There is
no direct way of representing this collection of edges forming
the signed graphs using solely the integer key. If we were to
use an integer as a key for the map, we would still have to
loop through the edges in that key for the comparisons, and
the cost would be O(|E|) equivalent to using the string key.

The graphBpp adapts Algorithm 2 as outlined in Algo-
rithm 3 to scale the computation. First, we compute the number
of balanced states that we can keep in the memory as Fmax

(Algorithm 3, line 2). Next, we keep only the Fmax best-
balanced states in B, their count through all k iterations in C,
and the number of switched edges for each of them in S(i).
Note that there can be different balanced states of Σ with
the same number of switched edges. Finally, we compute the
frustration index as a minimum of S). The proposed approach
scales well with the size of the signed graph, as we limit
the number of the nearest balanced states that we keep in
the memory based on their frustration index and capacity of
the frustration cloud map in-memory storage, as illustrated in
Algorithm 3. The comparison of balanced states now has up to
k iterations times Fmax closest balanced states. We determine
Fmax so that the size of the frustration cloud in memory is
smaller than CAP . In experiments, we define CAP as 75% of
the total RAM size, assuming that some vital system processes
are running in the background.

Algorithm 3 Tree-Based Graph Balancing and Frustration
Index (Scalable Version for Large-sized Graphs)

1: Input Σ signed graph and M tree sampling method
2: Generate set Tk of k spanning trees of Σ
3: Determine Fmax, it is the maximum number of nearest

balanced states the cloud can store before it reaches the
memory limit, memory consumption of F Sigma < CAP
where F Sigma is the frustration cloud of nearest balanced
states

4: Matrix B, count vector C, and edge switch count vector
S, i = 0, frInd=0

5: for T spanning tree, T ∈ Tk where Tk is a set of k
spanning trees of Σ do

6: Find nearest balanced state Σ′
i using Algorithm 1

7: frInd = number of edge sign switches (Algorithm 1, line
3)

8: if S is empty then
9: S(i) = frInd

10: B(i) = Σ′
i

11: C(i) = 1
12: end if
13: if frInd < maxi(S(i)) then
14: if Σ′

T /∈ B then
15: if i < Fmax then
16: i++
17: else
18: i← argmini S(i)
19: end if
20: S(i) = frInd
21: B(i) = Σ′

i

22: C(i) = 1
23: else
24: Ci++
25: end if
26: end if
27: end for
28: Return frustration index FrΣ = mini(S(i)) and frustra-

tion cloud FΣ = (B(i), C(i), S(i))Fmax
i=1

A. The graphBpp Complexity Analysis

Concerning the time complexity of graphBpp, it remains
O(|E|log(|V |)da) where da is the average degree of a vertex,
|V | is the number of vertices, and |E| is the number of edges
[29]. GraphB+ with (BFS) implementation has a complexity
of O(|E| ∗ log(|V | ∗ d)) time, where |E| is the number of
edges, |V | is the number of vertices, and d is the average
spanning-tree degree of the vertices on each cycle. The code
for scaling the processing and saving of balanced states in
the memory-bound frustration cloud and approximating the
frustration index, which builds upon graphB+, adds O(|E|).
O(|E| ∗ log(|V | ∗ d)) is still the dominant term for one
iteration (generating one spanning tree and nearest balanced
state). When generating |Tk| spanning trees (iterations), the
complexity then becomes O(|Tk| ∗ |E| ∗ log(|V | ∗ d)). On
the other hand, for adapting graphBpp to utilize other tree-
sampling techniques, the reimplemented vertex relabeling step

IEEE TRANSACTIONS OF BIG DATA, LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2024 6

takes O(|V | + |E|) because DFS is used to perform the
pre-order traversal on the random spanning tree generated.
The edge relabeling has been implemented, resulting in a
complexity of O(|V | ∗ |E| ∗ α) where α is the average depth
from a certain vertex of an edge to the deepest relabeled
vertex where the assignment of the end range of the edge
takes place. The efficient fundamental cycle balancing method
[29] has a complexity of O(|E| ∗ log(|V | ∗ d)). The adapted
version of graphB+ for index computation has a complexity
of O(|E|). Hence, the total time complexity for the adapted
version of graphBpp is O(|V | ∗ |E| ∗α) unless the complexity
of the selected custom sampler is high enough to exceed this
complexity. For |Tk| iterations of the algorithm, the complexity
is O(|Tk| ∗ |V | ∗ |E| ∗ α). Subsection IV-B outlines the time
complexity for each tree-sampling technique.

Algorithm 4 Hybridized RDFS-BFS Sampling
1: Input signed graph Σ and a root vertex n get uniformly

distributed random number 0 or 1, z
2: if z is 0 then
3: Run BFS algorithm [40]
4: else
5: Run RDFS algorithm
6: end if
7: Return spanning tree T of Σ

B. Sampling Spanning Trees
To maximize the chances of discovering the optimal nearest

balanced state in Algorithm 2, we propose to utilize random-
ization and hybridization of the standard tree sampling. The
Depth-First Search (DFS) algorithm [41] is a graph traversal
method characterized by its time complexity of O(|V |+ |E|).
The traversal commences at a root vertex and continues to
explore as deeply as possible along each pathway (branch)
before backtracking. This process repeats until a vertex is
reached where all adjacent vertices have already been visited.
The Breadth first search (BFS) algorithm [41] with time
complexity O(|V |+|E|) is a graph traversal approach in which
the algorithm first passes through all vertices on the same level
before moving on to the next level. A graph traversal technique
is a strategy employed to visit all the vertices of a graph.
A level is a group of vertices that are equidistant from the
root vertex. We propose to use the randomized algorithms as
follows: in each iteration, we shuffle and randomize a node’s
neighborhood using a uniformly distributed random seed num-
ber before applying a static algorithm. The idea is that a vertex
establishes a link to the first unvisited vertex based on the
network’s randomized order of the adjacency list. Random-
ized Depth First Search (RDFS) algorithm transforms DFS
into a non-deterministic algorithm by eliminating the static
ordering of the adjacency lists. The time complexity of the
DFS is known to be O(|V | + |E|), where |V | is the number
of vertices and |E| is the number of edges in the signed
network. The algorithm also runs in linear time O(n), where
n is the number of vertices adjacent to a specific vertex in the
network, so the total time complexity is O(|V |+ |E|). Aldous-
Broder algorithm with complexity O(|V |) produces a random

uniform spanning tree by performing a random walk on a finite
graph with any initial vertex and stops after all vertices have
been visited [42]. For the popular Kruskal’s algorithm [43]
that has a time complexity O(|E|log|V |) or O(|E|log|E|), we
intend to generate random spanning trees by assigning random
weights to every edge in each iteration before running the
algorithm. The method finds the minimum spanning tree of a
connected and weighted graph. Randomizing the weights of
Prim’s algorithm [44] [43] with complexity O(|V |2) can also
generate random spanning trees. We propose a new algorithm,
the RDFS-BFS sampler, to minimize the frustration index
and maximize the number of unique stable states to increase
algorithmic chances of finding the optimal state among all the
nearest balanced states. Algorithm 4 outlines the steps of the
RDFS-BFS sampler.

V. THE GRAPHL, LOSS FUNCTION METHODOLOGY

We use gradient descent to approximate the frustration index
and balance the signed graph in linear time. We adopt the
equation from Du et al. [31] that calculates the imbalance of
a fully signed network. The definition of structural balance
in these networks is different. According to the theory of
homophily, a fully signed network is balanced if every edge
is positive and the corresponding vertices have the same sign.
If there is a negative edge, the vertices should have different
signs. I suppose the fully signed network is balanced based
on the homophily theory. In that case, the underlying signed
network (ignoring vertex signs) is also balanced because the
fully signed network is a generalization of the signed network
[31]. The equation for computing imbalance in the fully signed
network is outlined in Eq. 3

L =
∑

∀(i,j)∈Σ

1− eijθiθj
2

(3)

where eij is the sign of the edge connecting vertex i to vertex
j. θi and θj are the vertex signs (1 or -1) for vertices i and
j respectively. The equation is a d differentiable loss function
that we will attempt to minimize by treating the θ signs of
the vertices as latent variables. Initially, the θ variables are
relaxed to continuous random variables in the range between
-1 to 1. We denote these continuous variables as Γ, which is
essentially a vector with a size equal to the number of vertices
in the signed graphs. The equation for optimization is then:

L =
∑

∀(i,j)∈Σ

1− eijΓiΓj

2
(4)

The loss function used is outlined in Eq. 4. Next, for each
gradient update iteration or round, the graphL algorithm
computes the loss using Eq. 3. Note that algorithm in lines
5-6 sets θi and θj to -1 if Γi and Γj are negative respectively
and to 1 if Γi and Γj are positive respectively. The algorithm
computes the gradients with respect to each latent variable Γi

in Γ vector in Eq. 4, and the gradients are:

Γi :
∂L

∂Γi
= −1

2

∑
Γjeij (5)

IEEE TRANSACTIONS OF BIG DATA, LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2024 7

Algorithm 5 Gradient Descent-Based Graph Balancing and
Frustration Index

1: Input signed Network Σ, learning rate α, number of
gradient updates λ

2: x=0
3: Initialize random float vector Γ of size equal to the number

of nodes.
4: while x < λ do
5: Compute loss function (also frustration index) using

L =
∑ 1−eijθiθj

2 where θi and θj is 1 if Γi and Γj

is greater than 0 respectively, otherwise -1
6: Induce relaxation and allow continuous values for θ

vector by substituting it with Γ: L =
∑ 1−eijΓiΓj

2

7: Compute the gradient with respect to each Γi: ∂L
∂vi

=

− 1
2

∑
Γjeij where Γj is the neighbor of Γi

8: Update Γ: v ← Γ− α∂L
∂Γ

9: x=x+1
10: end while
11: Initialize frustration=0
12: Initialize set visit = ϕ
13: Assign Σ′ = Σ
14: while all edges have not been visited do
15: Fetch unvisited edge eij between vertices i and j
16: if Γi >= 0 then
17: θi=1
18: end if
19: if Γj >= 0 then
20: θj=1
21: end if
22: if Γi < 0 then
23: θi=-1
24: end if
25: if Γj < 0 then
26: θj=-1
27: end if
28: frustration+= 1−eijθiθj

2

29: if 1−eijθiθj
2 =1 then

30: Flip the sign of eij in Σ′

31: end if
32: Add eij to visit
33: end while
34: Return Σ′ and frustration

Γj is the neighbor of Γi, and we update the values of the
elements of Γ using Γ: Γ ← Γ − α∂L

∂Γ . In this way, we
are directly minimizing the loss that represents the level of
imbalance in the signed network. We repeat the whole process
until we reach a predefined number of gradient updates λ.
These latent variables in Γ should converge to be either above
0 or below 0. Finally, we loop over every edge in the network
and discretize the values of Γi and Γj along eij to be integers
1 or -1 to be assigned back in θ vector. If Γi and Γj along edge
(i, j) have values above 0, we set ni and nj to 1. Otherwise,
we set them to -1. We use Eq. 3 to approximate the frustration
and increase the frustration counter by 1−eijθiθj

2 for each edge.
In addition, for each edge, if it is causing an imbalance,
then we flip its sign and finally return the balanced state.
Algorithm 5 summarizes the steps of the complete algorithm.

Our approach is different than the work by Tang et al.
[39] in several ways. First, we estimate the different types of
latent variables, and we only use a random float vector Γ of
size equal to the number of vertices to determine the optimal
membership of each vertex in the Harary subsets. Second, we
are not modeling any signed networks. Our focus is to flip the
sign of the edges after estimating the latent variables of each
vertex and approximate the frustration index. Tang et al. did
not explicitly and directly modify the edge signs of the graph.
Third, we propose the usage of a loss function for computing
the frustration index directly and for computing the gradients.
Fourth, we use the vanilla gradient descent approach instead of
the projected gradient descent to minimize our loss function.
We simply threshold the latent variables after optimization (ex,
if an element in the latent vector is 25 after the gradient-
descent step, which is above 0, we assign that element to be 1).
Fifth, our loss function is adopted from Du et al. [31] in which
they propose to measure imbalance for fully signed networks
as presented in Eq. 3. The loss function used by Tang et al.
is L =

∑n
i<j |Aij | 1+Aij

2 ηij + |Aij | log(1 − Sigma(ηij)))
where ηij = vivj , A is the adjacency matrix, σ is the sigmoid
function, and n is the number of nodes.

A. The graphL Complexity Analysis
For every gradient update and computation, it is sufficient

to loop over every edge in the signed graph in order to update
the elements in the Γ vector. The λ is the number of gradient
updates, and the total time complexity becomes O(λ ∗ |E|).
We utilize the compressed sparse row (CSR) format to model
the signed graph instead of the adjacency matrix because CSR
scales better memory-wise. The construction of the adjacency
matrix has a space complexity of O(V 2), which isn’t com-
putationally feasible when dealing with large signed graphs.
Computing the amount of imbalance also occurs in constant
time in each gradient update iteration as in Algorithm 5 in line
5, and it does not affect the total time complexity.

TABLE I
SNAP SIGNED GRAPH LARGEST CONNECTED COMPONENT (LCC)

ATTRIBUTES. |V | IS THE NUMBER OF VERTICES, AND |E| IS THE NUMBER
OF EDGES IN THE LARGEST CONNECTED COMPONENT LCC; THE LABEL

% positive IS THE NUMBER OF POSITIVE EDGES DIVIDED BY e;

SNAP vertices edges
[4] |V | |E| cycles % positive
test10 [29] 10 13 4 53.85
highland [45] 16 58 43 50
sampson18 [46] 18 112 95 54.4
rainFall [12] 306 93,636 93,331 68.78
S&P1500 [12] 1,193 711,028 709,836 75.13
wikiElec [4] 7,539 112,058 104,520 73.33
wikiRfa [4] 7,634 175,787 168,154 77.91
epinions [4] 119,130 704,267 585,138 83.23
slashdot [4] 82,140 500,481 418,342 77.03

VI. SETUP, IMPLEMENTATION, AND DATA

Signed Graph Benchmarks used in the experiments are
SNAP [4], Konect [5], and Amazon ratings [32]. Table I
and Table II summarizes SNAP and Konect signed graph
benchmarks.

IEEE TRANSACTIONS OF BIG DATA, LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2024 8

The Amazon ratings and reviews data [32] provides rating
information between 0 (low) and 5 (high) of the Amazon users
on different products. We have transformed the graphs into 18
signed bipartite graphs. The raw Amazon data was originally
in .json form and and maintained the rating, the item I.D., and
the user I.D. Here, the user I.D.s and the item I.D.s are the
nodes, and the edges between them are constructed based on
the rating value. If the rating is 5 nd 4, it implies a positive
edge; the rating is 3 and 2, it gives no edge, and if the ratings
is 0 and 1, it gives a negative edge. Table VI summarizes the
large signed graphs stemming from the process.

TABLE II
KONECT LARGEST CONNECTED COMPONENT (LCC) GRAPH ATTRIBUTES
[5] (EXCEPT TWITTERREF, WHICH IS NOT A KONECT GRAPH). |E| IS THE
NUMBER OF EDGES, AND |V | IS THE NUMBER OF VERTICES IN THE LCC

OF THE GRAPH. THE % posit ve LABEL MARKS THE PERCENTAGE OF
POSITIVE EDGES IN THE LCC.

Largest Connected Component Graph
Konect vertices edges cycles %
[5] |V | |E| |E| − |V |+ 1 positive
Sampson 18 126 145 51.32
ProLeague 16 120 105 49.79
DutchCollege 32 422 391 31.51
Congress 219 521 303 80.44
BitcoinAlpha 3,775 14,120 10,346 93.64
BitcoinOTC 5,875 21,489 15,615 89.98
Chess 7,115 55,779 48,665 32.53
TwitterReferendum 10,864 251,396 240,533 94.91
SlashdotZoo 79,116 467,731 388,616 76.092
Epinions 119,130 704,267 585,138 85.29
WikiElec 7,066 100,667 93,602 78.77
WikiConflict 113,123 2,025,910 1,912,788 43.31
WikiPolitics 137,740 715,334 577,595 87.88

Setup The operating system used for all experimental eval-
uations is Linux Ubuntu 20.04.3 running on the 11th Gen
Intel(R) Core(TM) i9-11900K @ 3.50GHz with 16 physical
cores. It has one socket, two threads per core, and eight cores
per socket. The architecture is X86 x64. The GPU is Nvidia G
Force and has 8GB of memory. Its driver version is 495.29.05,
and the CUDA version is 11.5. The cache configuration is L1d
: 384 KiB, L1i : 256 KiB, L2 : 4 MiB, L3 : 16 MiB. The CPU
op is 32-bit and 64-bit.
Implementation The baseline implementation relies on the
published Binary Linear Programming (BLP) code [47]. The
binary linear m del runs on a Jupyter notebook in Python [47]
and is based on a Gurobi mathematical solver and has several
parameters like the termination parameter where we can set a
time limit on how long the optimization process should last
in Gurobi [37]. The binary terms in the objective function
depend on the single AND constraints and two standard XOR
constraints per edge, respectively.

Two replacements in the ABS model’s objective function
linearized two absolute value terms [27]. The code [47] was
run with the following modifications: (1) -1 for the method
parameter that indicates that the method for optimization is
automatic, and the setting will typically choose the non-
deterministic concurrent method in the Gurobi’s documen-
tation [37] for this linear programming problem; (2) the
lazy parameter is set to 1 with enabled speedup; (3) thread
parameter is set to multiprocessing.cpu count(, and (4) the

time limit for the model run is set to up to 30 hours.
Note that the value of the lazy attribute influences how

aggressively the model is constrained. A value of 1 allows the
constraint to cut off a feasible solution. The code provided
[47] generates random graphs based on the specified number
of nodes, edges, and probability of negative edges. Our im-
provements to the code allow for the code to (1) accept the
same input format as graphBpp and to (2) detect and eliminate
duplicates, inconsistencies, self-loops, and invalid signs in the
input graph. The graphBpp implementation extends the open-
source implementation [29] to include and test proposed tree
sampling strategies while keeping the original speedup opti-
mization for finding fundamental cycles intact. The graphBpp
algorithm works with different tree-sampling strategies. It is
achieved by using C++ and involves minimizing the number of
loops used, incorporating OpenMP directives for parallel pro-
cessing, and promptly freeing up memory resources when they
are no longer needed. In the implementation of Algorithm 3,
the code checks the total RAM size of the Linux system during
runtime and the amount of memory currently being used by
the frustration cloud. These two values are compared in each
iteration to decide how many balanced states can be stored.
The code for graphBpp is available on GitHub, and the data it
uses is publicly accessible. The references for these resources
are [48] for the code and [4], [5], [32] for the data. On the
other hand, for the gradient-based heuristic, we set λ to 1000
and the learning rate α to 0.001.

VII. THE GRAPHBPP PROOF OF CONCEPT

We compare the proposed method to BLP baseline [7]
on SNAP [4], Konect [5], and Amazon [32] open-source
benchmarks. For the Amazon sign d graphs, we ran the
scalable version of graphBpp intended for large graphs, which
is Algorithm 3. For other smaller graphs, we ran Algorithm 2.
Running Algorithm efalg-index for the Amazon signed graphs
would not work because the 1000 balanced states for these
graphs would not fit in memory and would crash the program.
Thus, we cannot use both versions of the algorithm on
all signed graphs. The five experiments are summarized in
subsections as follows:

• Subsection VII-1 shows which tree-sampling technique
for graphBpp is ideal for minimizing the approximation
of the frustration index.

• Subsection VII-2 demonstrates the effect of increasing the
number of iterations on the convergence of the frustration
index to the minimum in graphBpp for a given signed
network.

• Subsection VII-3 shows how the proposed graphBpp al-
gorithm compares to Binary Linear Programming model
(BLP) [47] for computing the amount of frustration on
real-world signed networks in terms of performance and
time.

• Subsection VII-4 answers how to overcome the memory
restrictions of extracting and saving balanced states with
their associated frequencies and frustration in the frustra-
tion cloud for graphBpp.

IEEE TRANSACTIONS OF BIG DATA, LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2024 9

1) Selecting the Spanning Tree Method: We compare the
timing and frustration computation of graphBpp implemen-
tation of Algorithm 2 of SEVEN different tree sampling
methods described in subsection IV-B and look for the most ef-
fective and efficient sampling method for the frustration index
computation. The seven methods are Prim, Kruskal, Breadth
First Search (BFS), Depth First Search (DFS), Randomized
DFS (RDFS), Hybrid RDFS-BFS, and Aldous-Broder sam-
pling. Note that graphBpp runs are non-deterministic, and we
run the methods multiple times. The frustration committed and
completion time is always the same for smaller graphs and
within 0.1% for larger graphs. We compare the findings to the
BLP baseline implementation for SNAP datasets. The results
are summarized in Table IV in terms of the approximated frus-
tration index and Figure 3 (top) in terms of the approximated
frustration index as a percentage of the total number of edges
in the graph. Table V summarizes the resulting frustration
index per method. BFS-spanning trees produce balanced states
of minimum edge switches, and DFS-spanning trees make
trees with maximum edge switches, as evident from the
frustration computed in Figure 3 (top). RDFS/Kruskal/Aldous
Broder’s frustration scores are slightly better due to the
randomization step. BFS discovers the optimal trees for the
frustration computation, but they are repetitive.
The timing is reported on the log 10 scale in seconds in
Figure 3 (bottom) as BLP takes 30 hours for larger datasets (far
right navy bar in Fig. 3 (bottom)). RDFS-BFS hybrid app each
is competitive with BFS in terms of frustration index (green
and blue bars in Figure 3 (top)) with the small timing overhead
for large graphs (Fig. 3 (bottom)): BFS produces 117,587
frustrations while BFS-RDFS produces 115,932 frustrations
in 1000 iterations for the slashdot dataset. The Prim approach
is too slow for large datasets, and the baseline BLP takes too
long, or it does not complete. We also tabulated the timing per
iteration for each tree-sampling technique in Table III. Since
the time complexity of Prim is O(V 2), the number of iterations
is set to 1, and it was very inefficient and slow for large
graphs such as WikiConflict. Moreover, Aldous-Broder (AB)
did not terminate for DutchCollege because, in uncommon
scenarios, AB would get stuck looping when performing a
random walk after all the current vertex’s neighbors have
already been visited.

2) Iteration Timing: Here, we evaluate the efficiency of the
proposed algorithm by comparing graphBpp frustration and
timing if the number of iterations increases. Figure 4 shows
the change in performance for the two best tree sampling
methods when the number of iterations grows. As discussed in
subsection IV-B, more iterations will not impact BFS sampling
in smaller graphs. The frustration shows a slight improvement
for the larger graphs for both methods when the number of
iterations increases in Figure 4.

3) graphBpp vs. SOTA: In this experiment, we compare
the baseline BLP [27] with graphBpp implementation with
breadth-first search (BFS) spanning tree sampling in 1000
iterations in terms of the frustration index and the time it takes
to approximate the frustration index for 13 benchmark graphs
in Table V. The space complexity of BLP is O(|V |2), where
|V | is the number of vertices on the graph. Aref et al. state that

TABLE III
AVERAGE FRUSTRATION INDEX COMPUTATION TIME PER ITERATION

USING SPANNING TREE SAMPLING METHODS FOR 1000 ITERATIONS FOR
KONECT DATA IN TABLE II (EXCEPT TWITTERRE,F WHICH IS NOT A

KONECT GRAPH). BFS SAMPLING METHOD IS THE FASTEST. THE
ALGORITHM IS HIGHLY PARALLELIZABLE.

Konect [5] Computation Time for Spanning Tree Method
Sampling BFS RDFS DFS Hybrid Kruskal AB
Sampson 0.0003s 0.00084s 0.00053s 0.00106s 0.00055s 0.00057s
ProLeague 0.00027s 0.0008s 0.0035s 0.00088s 0.0005s 0.0005s
DutchCollege 0.0008s 0.00216s 0.00179s 0.00288s 0.00158s N/A
Congress 0.00102s 0.00505s 0.00301s 0.00629s 0.00317s 0.00340s
BitcoinAlpha 0.024s 0.126s 0.103s 0.143s 0.098s 0.102s
BitcoinOTC 0.041s 0.265s 0.229s 0.268s 0.214s 0.231s
Chess 0.085s 0.388s 0.283s 0.375s 0.250s 0.282s
TwitterRef. 0.457s 2.826s 2.277s 2.566s 2.111s 2.155s
SlashdotZoo 0.838s 19.131s 13.803s 15.102s 9.849s 11.880s
Epinions 1.368s 20.794s 12.795s 16.715s 11.902s 13.373s
WikiElec 0.16859s 0.63977s 0.487s 0.559s 0.462s 0.502s
WikiConflict 6.503s 94.102s 65.282s 77.045s 40.720s 41.293s
WikiPolitics 1.582s 21.585s 17.374s 19.613s 15.925s 17.010s

TABLE IV
SNAP FRUSTRATION FOR 1000 ITERATIONS OF GRAPHBPP WITH SEVEN
DIFFERENT TREE SAMPLERS INTRODUCED IN SUBSECTION IV-B, AND THE

BASELINE. AB STANDS FOR ALDOUS-BRODER. BFS AND HYBRID
CONSISTENTLY PERFORM THE BEST.

rainFall S&P 1500 wikiElec wikiRfa epinions slashdot
BFS 10,217 134,515 24,827 43,971 100,450 117,587

RDFS 20,047 326,957 51,197 78,215 276,584 205,236
DFS 22,879 351,135 50,617 78,151 275,211 205,089

Hybrid 10,217 134,863 23,970 42,573 118,588 115,932
Kruskal 18,576 318,733 38,255 71,990 200,264 188,495

AB 19,403 323,657 47,252 74,438 246941 198785
Prim 21,312 355,819 51,732 79,482 N/A N/A
BLP 10,150 176,965 29,257 26,778 N/A 77,283

Fig. 3. Frustration index (top) and timing (bottom) comparison computed
using Binary Linear Programming (BLP) [27] and graphBpp 1000 iterations
for different tree sampling methods over different real large signed graphs
except for Prim (1 iteration). BLP never finished computing the frustration
index for epinions and sp1500 within the 30 hours allocated.

IEEE TRANSACTIONS OF BIG DATA, LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2024 10

Fig. 4. graphBpp frustration for six benchmark datasets, two spanning three
sampling approaches (BFS and RDFS-BFS), and three different iteration
counts.

TABLE V
SNAP SIGNED GRAPH BASELINE PERFORMANCE AS A FUNCTION OF THE

NUMBER OF FUNDAMENTAL CYCLES |E| − |V |+ 1 FOR THE BASELINE
BINARY LINEAR PROGRAMMING (BLP) [27] AND PROPOSED graphBpp

ALGORITHM WITH BFS TREE SAMPLING FOR FRUSTRATION INDEX
COMPUTATION. THE BLP BASELINE NEVER COMPLETES FOR OPINIONS

AND NEVER CONVERGES BEYOND THE GUROBI HEURISTIC FOR S&P1500
WIKIELEC AND WIKIRFA DATASETS (*).

SNAP Cycles BLP graphBpp
[4] |E| − |V |+ 1 index time index time
test10 [29] 4 2 0.053s 2 0.08s
highland [45] 43 7 0.037s 7 0.13s
sampson18 [46] 95 39 0.08s 39 0.27s
rainFall [12] 93,331 10,150 7.26hrs 10,271 83.4s
S&P1500 [12] 709,836 176,965* N/A 134,515 1478s
wikiElec [4] 104,520 29,360* 30hrs 24,827 184s
wikiRfa [4] 168,154 29,971* 30 hrs 43,971 281s
epinions [4] 585,138 N/A N/A 100,450 1360s
slashdot [4] 418,342 77,306* 30 hrs 117,587 937s

the signed graphs with up to 100, 000 edges will be solved in
10 hours [27]. Since our computer can store all 1000 nearest
balanced states for each of these 13 signed graphs in memory,
we ran the graphBpp implementation of Algorithm 2 (non-
scalable version of the algorithm for small and medium-sized
graphs). This algorithm does not handle the case when the
memory is complete and it is slightly faster than Algorithm 3
where it employs nearest balanced state replacement after it
reaches the memory limit. All external processes are closed to
prevent interference with time measurements. The measure-
ment for both methods includes the time it takes to input the
file, process it, and output the results.

The last four columns of Table V summarize our findings
on the SNAP benchmark. BLP and graphBpp computation
for small graphs was fast and yielded equal indices such
as highland and sampson18. Both methods retrieve correct
frustration indices for the three datasets. The baseline code
f ils for two graphs with over 700,000 edges, as described
in Table II. The BLP code fails or the sparse opinions (over
700,000 vertices) and produces no results (adjacency matrix
cannot fit in memory and crashes the jupyter notebook), where
graphBpp finds 1000 nearest balanced states of the graph,
the most optimal one with frustration 100,450 in under 23
minutes. BLP code on the fully connected S&P1500 signed
graph produces a heuristic frustration estimate of 176,965

and crashes without outputting the time. The source of the
failure is that the Python kernel stops working. On the other
hand, graphBpp finds 1000 near-balanced states of the network
and associated frustration 134,515 in 24.6 minutes (Table II).
The most extensive signed graph in which we were able to
run the linear binary solver was the fully connected rainFall
network [12] due to |E| < 100, 000 [27] algorithm limitation.
The linear binary solver finished with a frustration index
of 10,150 and a time of 7.26 hours while the graphBpp ’s
computed frustration index was 10,217 in 83.58s (0.02 hours),
more than 300 times faster. The linear binary solver fails to
complete the computations for wikiElec within 30 hours: the
frustration index is 29,360, where graphBpp calculated the
frustration 24,827 and provides an associated balanced state
in 185s (3min+). Note that the BLP c de produces a heuristics
frustration estimate in 30 hours for wikiRfa and slashdot (it
fails for epinion) and a gap with no associated balanced state
as a guide on balancing the graph. For wikiRfa and slashdot,
the heuristic upper bound computed in 30 hours is much lower
than the discovered balanced states. On the other hand, able II
outlines that graphBpp finds 1000 unique near-balanced states
for wikiRfa and slashdot in 5min and 15min, respectively, and
offers frustration as a measure of the nearest balanced state it
discovered in the process.

In summary, the graphBpp outputs the corresponding bal-
anced state in the same time frame, while the BLP code does
not. The graphBpp computes the nearest balanced states in
minutes for large graphs compared to hours for BLP if the
computation does not fail. For eight out of ten graphs tested,
graphBpp frustration is exact (4), close to actual (rainFall), or
better than the heuristic (wikiElec, S&P1500, and epinions).
The proposed graphBpp balanced state discovery is equal
to or superior to the state-of-the-art for small networks and
efficient for more extensive networks, and scales for large
networks both in terms of processing time and producing
outcomes where BLP either fails or makes heuristics without
the associated balanced state.

4) Scaling Balanced State Discovery: We implement Al-
gorithm 3 and set the CAP to 75% of the total RAM size.
We apply it to Amazon data in Table VI. The BLP model
only worked and converged for the smallest 3 Amazon signed
networks, the Core5 reviews in Table VI. All Amazon ratings
and graphs have several vertices |V | higher than 300,000, and
BLP outputs a memory error before initializing the model. The
algorithm attempts to construct an adjacency matrix that does
not fit into memory for any graph with more than 100,000
vertices. The serialized process takes about an extra hour
for each 1 million edges, and the processing time, for a
fixed CAP , is way less than BLP across the board with an
increasing number of edges and vertices, see Figure 5. The
BLP algorithm c converges within 30 hours for smaller signed
graphs and finds the optimal frustration index. graphBpp
recovers the balanced state and associated frustration index
for small graphs and in minutes for under 2 million edges;
see the last column of Table VI. The most extensive graph
we have processed is Amazon books with close to 10 million
vertices and over 22 million edges, and it took 19 hours to
find the nearest balanced state with frustration 3,146,316. In

IEEE TRANSACTIONS OF BIG DATA, LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2024 11

TABLE VI
AMAZON RATINGS AND REVIEWS GRAPH CHARACTERISTICS [32]: THE
NUMBER OF VERTICES, EDGES, AND CYCLES REFLECT THE NUMBER IN

THE LARGEST CONNECTED COMPONENT OF EACH DATASET. (*)
INDICATES THAT GUROBI NEVER CONVERGED.

Amazon |V | |E| BLP graphBpp
Ratings index time index time
Books 9,973,735 22,268,630 N/A N/A 3,146,316 19hrs
Electronics 4,523,296 7,734,582 N/A N/A 1,025,401 7.8 hrs
Jewelry 3,796,967 5,484,633 N/A N/A 613,129 6hrs
TV 2,236,744 4,573,784 N/A N/A 636,568 5.2hrs
Vinyl 1,959,693 3,684,143 N/A N/A 412,859 4.4hrs
Outdoors 2,147,848 3,075,419 N/A N/A 264,497 4hrs
Android App 1,373,018 2,631,009 N/A N/A 386,947 3.6hrs
Games 1,489,764 2,142,593 N/A N/A 173,063 2.2hrs
Automotive 950,831 1,239,450 N/A N/A 85,859 50min
Garden 735,815 939,679 N/A N/A 70,690 32.2min
Baby 559,040 892,231 N/A N/A 106,092 30.1min
Digital Music 525,522 702,584 N/A N/A 34,019 23min
Instant Video 433,702 572,834 N/A N/A 32,001 20.7min
Musical Inst. 355,507 457,140 N/A N/A 24,959 14.7min
Amazon |V | |E| BLP graphBpp
Reviews index time index time
Digital Music 9,109 64,706 10,482* 30 hrs 19,926 101s
Instant Video 6,815 37,126 6,001* 30hrs 10,833 101s
Musical Instr 2,329 10,261 1,162 136.15s 2,311 17.3s

conclusion, we have demonstrated that graphBpp can scale
and find the nearest balanced state for any size of a signed
graph.

Fig. 5. graphBpp scales better with increasing graph size |V | + |E| for a
fixed number of iterations (1000) for the benchmark Konect Table II) and
Amazon Table VI signed graphs.

VIII. THE GRAPHL PROOF OF CONCEPT

We pit graphL against graphBpp for approximating the
frustration index and in order to obtain better stable states.
We run both heuristics on the Konect signed graphs. We
use Breadth-First Search as the tree-sampling technique for
graphBpp using Algorithm 3 since we proved it yields minimal
edge sign switches previously. Since we might obtain different
results for each run for the gradient descent-based method due
to the random initialization of the Γ vector, we run the heuristic
five times and choose the minimal edge sign switches produced
out of them. Table VII summarizes the results.

First, we can observe that the gradient descent-based method
is much more efficient across the board because the heuristic
runs in linear time, and it does not have to extract and
save multiple nearest balanced states in memory because only

graphBpp is capable of forming the frustration cloud. Second,
the gradient descent-based approach generally produces more
optimal balanced states for every signed graph than that of
graphBpp except Sampson, Congress, and TwitterRef. for the
same number of iterations/gradient updates. However, the for-
mer comes with a downside, which is tuning the learning rate
hyperparameter and finding the proper initialization. Hence,
graphBpp is advantageous in the sense that it does not need
any hyperparameter tuning, and it is a non-trainable algorithm.
Unlike graphBpp, graphL produces only one balanced state
and cannot generate multiple nearest balanced states, which
are essential for computing the consensus features proposed in
[28]. These features are used in clustering and signed network
analysis [49].

TABLE VII
COMPARISON OF THE FRUSTRATION INDEX APPROXIMATION AND

EXECUTION TIME USING GRAPHBPP AND GRAPHL WITH 1000
ITERATIONS FOR BOTH ON THE KONECT DATA IN TABLE II (EXCEPT

TWITTERRE,F WHICH IS NOT A KONECT GRAPH).

Konect [5] graphL graphBpp
Graphs index time index time
Sampson 37 0.030s 35 0.304s
ProLeague 13 0.003s 13 0.27s
DutchCollege 2 0.010s 2 0.80s
Congress 38 0.008s 21 1.021s
BitcoinAlpha 900 0.18s 1,105 24.38s
BitcoinOTC 1,426 0.27s 1,827 40.55s
Chess 14,684 0.70s 20,991 85.35s
TwitterRef. 19,500 2.72s 16,183 456.80s
SlashdotZoo 80,787 6.31s 109,930 837.76s
Epinions 57,874 9.66s 100,646 1,367.74s
WikiElec 15,389 1.11s 22,289 168.59s
WikiConflict 167,003 25.29s 252,400 6503.24s
WikiPolitics 58,438 9.32s 86,833 1582.30s

IX. CONCLUSION

There is more than one way to achieve balance in the net-
work. The frustration index characterizes the optimal nearest
balanced state where the minimum edge switches are required
to achieve balance in the network. The tree-spanning approach
to graph balancing produces the nearest balanced states, e.g.,
there can be no other balanced state nearest balanced state
derived from [28]. In this paper, we extend our findings and
propose a novel algorithm for discovering the nearest balanced
states for any graph size in a fraction of the time. Our approach
converges to the global optimum for the small graphs that
the state-of-the-art binary linear programming (BLP) model
computes. BLP does not work for graphs larger than 100,000
vertices while graphBpp seamlessly scales with the graph
size to discover one or more nearest balanced states for the
network. The state might not be optimal for a minimal number
of edge switches, but it is close to optimal, and the algorithm
produces a list of edges to switch to achieve the balanced
state. We have shown that the iterations of the underlying
algorithm can be parallelized [29]. And we report the result on
one computer for 1000, 2000, or 5000 iterations. The timing
of one iteration will help us scale the process even further as
we will spawn the jobs in parallel for large signed graphs. In
addition, we propose the use of gradient descent as a way to

IEEE TRANSACTIONS OF BIG DATA, LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2024 12

approximate the frustration index in linear time. We compared
both graphBpp and graphL, and we deduce that the latter is
efficient and generally yields more optimal balanced states as
tested on Konect signed graphs.

REFERENCES

[1] T. Antal, P. L. Krapivsky, and S. Redner, “Social balance on networks:
The dynamics of friendship and enmity,” Physica D: Nonlinear
Phenomena, vol. 224, no. 1, pp. 130–136, 2006. [Online]. Available:
http://arxiv.org/abs/physics/0605183

[2] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and
negative links in online social networks,” in Proceedings of the 19th
International Conference on World Wide Web, ser. WWW ’10. ACM,
2010, pp. 641–650.

[3] M. Saberi, R. Khosrowabadi, A. Khatibi, B. Mišić, and G. Jafari,
“Topological impact of negative links on the stability of resting-state
brain network,” Scientific Reports, vol. 11, no. 1, p. 2176, 2021. [Online].
Available: http://www.nature.com/articles/s41598-021-81767-7

[4] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, June 2014.

[5] J. Kunegis, “KONECT – The Koblenz Network Collection,” in
Proceedings of the 22nd International Conference on World Wide Web,
ser. WWW ’13. ACM, 2013, pp. 1343–1350. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2488173

[6] M. Tomasso, L. Rusnak, and J. Tešić, “Advances in scaling community
discovery methods for signed graph networks,” Journal of Complex
Networks, vol. 10, no. 3, 06 2022, cnac013. [Online]. Available:
https://doi.org/10.1093/comnet/cnac013

[7] S. Aref, A. J. Mason, and M. C. Wilson, “An exact method for
computing the frustration index in signed networks using binary
programming,” CoRR, vol. abs/1611.09030, 2016. [Online]. Available:
http://arxiv.org/abs/1611.09030

[8] T. Liu, J. Cui, H. Zhuang, and H. Wang, “Modeling polypharmacy ef-
fects with heterogeneous signed graph convolutional networks,” Applied
Intelligence, vol. 51, pp. 8316–8333, 2021.

[9] R. Li, X. Yuan, M. Radfar, P. Marendy, W. Ni, T. J. O’Brien, and P. M.
Casillas-Espinosa, “Graph signal processing, graph neural network and
graph learning on biological data: A systematic review,” IEEE Reviews
in Biomedical Engineering, pp. 1–1, 2021.

[10] S. Casas, C. Gulino, R. Liao, and R. Urtasun, “Spagnn: Spatially-
aware graph neural networks for relational behavior forecasting from
sensor data,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 9491–9497.

[11] T. Liu, A. Sheng, G. Qi, and Y. Li, “Admissible bipartite consensus in
networks of singular agents over signed graphs,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 68, no. 8, pp. 2880–2884,
2021.

[12] M. Cucuringu, A. V. Singh, D. Sulem, and H. Tyagi, “Regularized
spectral methods for clustering signed networks,” Journal of Machine
Learning Research, vol. 22, no. 264, pp. 1–79, 2021.

[13] R. P. Abelson and M. J. Rosenberg, “Symbolic psycho-logic: A model
of attitudinal cognition,” Behavioral Science, vol. 3, no. 1, pp. 1–13,
1958.

[14] F. Heider, “Attitudes and cognitive organization,” J. Psychology, vol. 21,
pp. 107–112, 1946.

[15] D. Cartwright and F. Harary, “Structural balance: a generalization of
Heider’s theory,” Psychological Rev., vol. 63, pp. 277–293, 1956.

[16] F. Harary and D. Cartwright, “On the coloring of signed graphs.”
Elemente der Mathematik, vol. 23, pp. 85–89, 1968. [Online]. Available:
http://eudml.org/doc/140892

[17] T. Derr, Z. Wang, J. Dacon, and J. Tang, “Link and interaction polarity
predictions in signed networks,” Social Network Analysis and Mining,
vol. 10, no. 1, pp. 1–14, 2020.

[18] K. Garimella, T. Smith, R. Weiss, and R. West, “Political polarization
in online news consumption,” in Proceedings of the International AAAI
Conference on Web and Social Media, vol. 15, 2021, pp. 152–162.

[19] R. Interian, R. G. Marzo, I. Mendoza, and C. C. Ribeiro, “Network
polarization, filter bubbles, and echo chambers: An annotated review of
measures, models, and case studies,” arXiv preprint arXiv:2207.13799,
2022.

[20] V. Amelkin and A. K. Singh, “Fighting opinion control in social
networks via link recommendation,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 677–685.

[21] Z. Seif and M. Ahmadi, “Computing frustration index using genetic al-
gorithm,” Communications in Mathematical and in Computer Chemistry,
vol. 71, pp. 437–443, 2014.

[22] G. Iacono and C. Altafini, “Average frustration and phase transition
in large-scale biological networks: a statistical physics approach,”
IFAC Proceedings Volumes, vol. 43, no. 14, pp. 320–325, 2010, 8th
IFAC Symposium on Nonlinear Control Systems. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S147466701536986X

[23] M. Saberi, R. Khosrowabadi, A. Khatibi, B. Misic, and G. Jafari,
“Requirement to change of functional brain network across the lifespan.”
PLoS ONE, vol. 16, no. 11, pp. 1 – 19, 2021. [Online]. Available:
https://libproxy.txstate.edu/login?url=https://search.ebscohost.com/login.
aspx?direct=true&db=fsr&AN=153656396&site=eds-live&scope=site

[24] X. Zhou, H. Song, and J. Li, “Residue frustration based prediction
of protein-protein interactions using machine learning.” Journal
of physical chemistry, vol. 126, no. 8, pp. 1719–727, 2022.
[Online]. Available: https://libproxy.txstate.edu/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=agr&AN=
IND607691906&site=eds-live&scope=site

[25] A. Fontan and C. Altafini, “Achieving a decision in antagonistic
multi agent networks: frustration determines commitment strength.”
2018 IEEE Conference on Decision and Control (CDC), Decision
and Control (CDC), 2018 IEEE Conference on, pp. 109 – 114,
2018. [Online]. Available: https://libproxy.txstate.edu/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=
edseee.8619615&site=eds-live&scope=site

[26] F. Hüffner, N. Betzler, and R. Niedermeier, “Separator-based data reduc-
tion for signed graph balancing,” Journal of combinatorial optimization,
vol. 20, no. 4, pp. 335–360, 2010.

[27] S. Aref and Z. P. Neal, “Identifying hidden coalitions in the us house
of representatives by optimally partitioning signed networks based on
generalized balance,” Scientific reports, vol. 11, no. 1, pp. 1–9, 2021.

[28] L. Rusnak and J. Tešić, “Characterizing attitudinal network graphs
through frustration cloud,” Data Mining and Knowledge Discovery,
vol. 6, November 2021.

[29] G. Alabandi, J. Tešić, L. Rusnak, and M. Burtscher, “Discovering and
balancing fundamental cycles in large signed graphs,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’21. New York, NY,
USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3458817.3476153

[30] Muhieddine Shebaro and Jelena Tešić, “Scaling frustration index and
corresponding balanced state discovery for real signed graphs,” in
Submitted to a Conference, 2023.

[31] H. Du, X. He, and M. W. Feldman, “Structural balance in fully signed
networks,” Complexity, vol. 21, no. S1, pp. 497–511, 2016. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cplx.21764

[32] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering,” in Proceedings
of the 25th International Conference on World Wide Web, ser. WWW
’16. ACM, 2016, pp. 507–517.

[33] M. Saberi, R. Khosrowabadi, A. Khatibi, B. Misic, and G. Jafari,
“Pattern of frustration formation in the functional brain network.”
NETWORK NEUROSCIENCE, vol. 6, no. 4, pp. 1334 – 1356,
2022. [Online]. Available: https://libproxy.txstate.edu/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=
000889309400010&site=eds-live&scope=site

[34] M. T. Schaub, N. O’Clery, Y. N. Billeh, J.-C. Delvenne, R. Lambiotte,
and M. Barahona, “Graph partitions and cluster synchronization in net-
works of oscillators,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 26, no. 9, p. 094821, 2016.

[35] T. Došlić and D. Vukičević, “Computing the bipartite edge frustration
of fullerene graphs,” Discrete Applied Mathematics, vol. 155, no. 10,
pp. 1294–1301, 2007.

[36] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering.”
Machine Learning, vol. 56, no. 1-3, pp. 89 – 113, 2004.
[Online]. Available: https://libproxy.txstate.edu/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=edssjs&AN=edssjs.
975B661D&site=eds-live&scope=site

[37] GUROBI, “Gurobi optimization,” https://www.gurobi.com/.
[38] M. K. Fallah, M. Mirhosseini, M. Fazlali, and M. Daneshtalab, “Scalable

parallel genetic algorithm for solving large integer linear programming
models derived from behavioral synthesis,” in 2020 28th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP), 2020, pp. 390–394.

[39] W. Tang and J. Zhu, “Population-level balance in signed networks,”
2023.

IEEE TRANSACTIONS OF BIG DATA, LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2024 13

[40] M. Burtscher, “graphB+: Balancing algorithm for large graphs,” https:
//userweb.cs.txstate.edu/∼burtscher/research/graphB/, 2021.

[41] T. H. Cormen, Introduction to algorithms. MIT Press, 2009.
[Online]. Available: https://libproxy.txstate.edu/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=cat00022a&AN=txi.
b5115051&site=eds-live&scope=site

[42] Y. Hu, R. Lyons, and P. Tang, “A reverse aldous-broder algorithm.”
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES
ET STATISTIQUES, vol. 57, no. 2, pp. 890 – 900, 2021.
[Online]. Available: https://libproxy.txstate.edu/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=
000677592900014&site=eds-live&scope=site

[43] Y. Wu, D. Meng, and Z.-G. Wu, “geeksforgeeks,” https://www.
geeksforgeeks.org/, accessed: 2023-06-01.

[44] S. I. Gass and M. C. Fu, Eds., Prim’s Algorithm. Boston,
MA: Springer US, 2013, pp. 1160–1160. [Online]. Available:
https://doi.org/10.1007/978-1-4419-1153-7 200635

[45] K. Read, “Cultures of the central highlands, new guinea,” Southwestern
Journal of Anthropology, vol. 10, no. 1, pp. 1–43, 1954.

[46] S. Sampson, “A novitiate in a period of change: An experimental and
case study of relationships,” Ph.D. thesis, Cornell University, 1968.

[47] S. Aref, “frustration-index-xor,” https://github.com/saref/
frustration-index-XOR, 2021.

[48] Anonimoys, “Codebase for scaling frustration index and correspond-
ing balanced state discovery for real signed graphs paper,” https://
anonymous.4open.science/r/graphBplusplus-547A/README.md, 2023.

[49] M. Tomasso, L. Rusnak, and J. Tešić, “Cluster boosting and data
discovery in social networks,” in Proceedings of the 37th ACM/SIGAPP
Symposium On Applied Computing (SAC), 2022.

Muhieddine Shebaro is a Computer Science Ph.D.
student at Texas State University. He received his
B.S c degree in Computer Science from Beirut Arab
University, Lebanon, in 2021. His research interests
include network science, machine learning, and data
science.

Jelena Tešić, Ph.D. is an Assistant Professor at
Texas State University. Before that, she was a re-
search scientist at Mayachitra (CA) and IBM Watson
Research Center (NY). She received her Ph D.
(2004) and M.Sc. (1999) in Electrical and Computer
Engineering from the University of California Santa
Barbara, CA, USA, and Dipl. Ing. (1998) in Electrica
Engineering from the University of Belgrade, Serbia.
Dr. Tešić served as Area Chair for ACM Multimedia
2019-present and IEEE ICIP and ICME conferences;
she has served as Guest Editor for IEEE Multimedia

Magazine for the September 2008 issue and as a reviewer for numerous IEEE
and ACM Journals. She has authored over 40 peer-reviewed scientific papers
and holds six US patents. Her research focuses on advancing the analytic
application of EO remote sensing, namely object localization and identification
at scale. She is an IEEE senior member.

