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Abstract
Searching for unseen objects in extensive visual archives is challenging, demand-
ing efficient indexing methods that can support meaningful similarity retrievals.
This research paper presents the Stratified Graph (SG) approach for indexing
similar deep descriptors by sorting them into distance-sensitive layers. The index-
ing algorithm incrementally constructs a bi-directional m-nearest neighbor graph
within each layer, with additional 1-nearest neighbor links from outer layers, pro-
viding a distant scaling property in the graph structure. The search process starts
from the innermost layer, and the same layer neighbors enhance Average Recall
(AR), while the distant scaling property enhances search speed, maintaining loga-
rithmic complexity scaling. We compare and contrast SG with six state-of-the-art
retrieval methods in four deep-descriptor and two classical-descriptor databases,
and we show that the SG indexing and search has smaller memory usage (up
to four times) and the Mean Average Precision and AR improve up to 8% over
state-of-art for all six datasets at five retrieval depths.

Keywords: Similarity search, High-dimensional indexing, Deep descriptors search,
Information retrieval, Vector search, Graph-based index

1 Introduction
Video archives house immense data and analytics that cannot be processed manually.
The task of identifying similar objects in exabytes of video archive data in a scalable
and effective way can help resolve many video analytics tasks, for example, the surveil-
lance task: When was this object spotted before? ; the crowd sensing task Was this
object in the archive footage?, and the reconnaissance task: Find me similar objects in
archived footage.
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Classifiers sparsely help as object labeling is sparse, and labels are unavailable for
every target of interest. Deep descriptors capture objectness characteristics well for
the long tail of tasks, regardless of the size or density of the objects, as shown in
[1, 2] for overhead imagery. Recent object detectors built on CenterNet2[3], YOLOv4
[4], SOD [5], and TPH-YOLOv5 [6] capture the objectness in a feature vector well.
Now, identifying similar objects in exabytes of video archives reduces to designing an
efficient indexing and search system in the deep descriptor databases [7]. This research
proposes a novel indexing and search approach that supports efficient and effective
Approximate Nearest Neighbor search in high-dimensional deep descriptor space.

Fig. 1: Different distribution for the 100,000 randomly sampled SIFT, ORB, ResNet,
and Mobile V3 descriptor values (left to right) for the first two dimensions of the
VisDrone (top), DOTA (middle), and DIOR (bottom) dataset.
1.1 Motivation
The dissimilarity between deep descriptor databases and conventional descriptors
necessitates particular consideration within the context of Approximate Nearest
Neighbor (ANN) search applications. To elucidate the disparities between deep
descriptors and their traditional counterparts, this research undertakes the extrac-
tion of features from three experimental datasets. The conventional descriptors,
namely Scale-Invariant Feature Transform (SIFT) [8] and Oriented FAST and Rotated
BRIEF (ORB)[9], are employed as the feature extraction pipeline for the traditional
descriptors. In contrast, deep descriptors are generated using the ResNet-50 [10] and
MobileNetV3[11] pipelines. Table 1 shows the characteristics of the feature databases
for different feature extractors. Deep descriptor databases are high dimensional (1024)
and sparse: for example, on average 65.86% zeros per feature vector in the deep
descriptor datasets compared to the traditional feature descriptors which have only
6.69% zeros. Thus, the sparsity and high dimensionality curse will degrade the simi-
larity search performance compared to conventional descriptor databases with a low
percentage of zero entries and smaller dimensions. Figure 1 illustrates the value dis-
tribution of feature vectors and how different traditional features are from the deep
features.
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Fig. 2: t-SNE distribution for 100,000 VisDrone (top), DOTA (middle), and DIOR
(bottom) SIFT, ORB, ResNet, and Mobile V3 descriptor values (left to right)

Deep descriptors exhibit a concentration of feature vector values near the origin.
This concentration phenomenon implies that the dataset shows high sparsity within
the feature space, whereby a substantial portion of the feature vectors appears confined
to a specific region along the primary axis. Understanding the sparsity patterns in
the feature space can provide valuable insights for optimizing ANN search processes
on deep descriptors. In Figure 2, we present t-SNE distributions of random 100,000
vectors from deep descriptor databases, while Figure 2 displays the t-SNE distribution
of traditional descriptors. The conventional SIFT and ORB descriptors show a similar
distribution for all three datasets in Figure 2 where the features are clustered in two
dense clusters for SIFT. For ORB, the features are clustered into a single dense cluster.
The deep descriptors show varying distributions for different datasets in Figure 2.

Table 1: SIFT and ORB, Resnet50 and MobilenetV3 descriptor datasets.
Descriptor SIFT ORB ResNet50 MobileNetV3

Dimension [Source] 128 [8] 32 [9] 1024 [10] 1024 [11]
Dataset # in Ms % of 0s # in M % of 0s # in M % of 0s # M % of 0s

VisDrone (Videos) [12] 5.28 15.13 1.29 0.54 0.12 63.37 0.13 80.97
DOTA2.0 (Images) [13] 3.40 12.05 0.92 0.73 0.16 56.28 0.24 79.54

DIOR (Images) [14] 2.89 11.21 5.81 0.53 0.11 46.91 0.17 68.11

The deep descriptors tend to cluster into different regions and exhibit more dis-
crimination for similarity search than traditional descriptors. Given our objective
of effectively and efficiently finding similar objects represented by high-dimensional
sparse deep descriptors, our focus is on proposing an indexing and search structure
for deep descriptor databases. Similarity search looks for object representations in a
database that are similar or close to a query based on a specific similarity measure.
That measure is usually a distance function. Let’s define X as a metric space with asso-
ciated distance function d(p, q), and P as a set of points in that metric space p, q ∈ P .
The nearest neighbor of a query point q is p if d(p, q) ≤ d(q, p′), ∀q, p, p′ ∈ P, p ̸= p′.
The k-nearest neighbors (k-NN) search identifies the top k nearest neighbors to query
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q and has complexity O(|P | × d), where |P | is a number of points in P and d is the
dimension of points in P . Thus, k-NN does not scale for |P | in millions or billions and
d in hundreds and thousands, and the search task becomes indexing and search task
for large high-dimensional descriptor databases.

2 State Of The Art

Fig. 3: Approximate Near-
est Neighbor search: p(red
dot) is the nearest neigh-
bor, and p’(orange dot)
is the approximate nearest
neighbor to query q (blue
dot).

Approximate Nearest Neighbor Indexing and
Search: The index is the data structure that summa-
rizes point dataset P and allows for the efficient approx-
imate nearest neighbor retrieval that closely matches
brute force nearest neighbor retrieval set without the
need to compute all distances from query vector q to
all the points in P . The approximate nearest-neighbor
(ANN) methods are optimized to balance efficiency and
effectiveness and offer speed up at the account of the
accuracy [15]. ANN methods are optimized to return
any point p′ ∈ P such that the distance from q to p′

is at most c ·minp∈PD
(
q, p

)
, for some c ≥ 1. In Figure

3, the distance to the nearest neighbor minp∈PD
(
q, p

)
from query q is shown as r. Therefore, the approximate nearest neighbor p′ from query
q is within distance cr.

Related Work: State of the art can be roughly grouped as graph-based [16–
19], hashing-based [20–22], and partition-based [23, 24] methods. The Faiss library[8]
enables efficient partitioning of data in Voronoi cells [8], where the index of each cell
is a centroid of that cell and product quantization is used [25] to compress data.
Annoy[23] generates several hierarchical 2-means trees by recursive partitioning. Each
iteration forms two centers by conducting a basic clustering algorithm on a subset
of samples from the input data points. The two centers define a partition hyper-
plane that is equidistant from each other. The hyperplane then partitions the data
points into two sub-trees, and the algorithm iteratively generates the index on each
sub-tree. This approach did not scale to larger high dimensional datasets in terms of
the speed of recovery and accuracy of the retrieved results [26]. The research paper
[27] introduces a novel approach to graph partitioning through supervised learning.
The core concept involves creating a k-NN graph and then dividing it into prede-
fined segments of roughly equivalent size while minimizing inter-segment edges. Next,
the optimal partition is achieved by training a classifier on data points, with their
labels denoting the segments determined in the earlier step. This method proves to be
particularly effective for managing index storage within a distributed system.Relative-
Nearest Neighbor Descent (RNN-Descent) [19] merges NN-Descent, an algorithm for
constructing approximate k-NN graphs, with RNG-Strategy, an edge selection algo-
rithm. However, RNN-Descent focuses on the speed of index creation and loses some
accuracy in the process. Hierarchical Navigable Small World (HNSW) [28] arranges
the graph into a hierarchy of proximity graph layers with a lower layer containing
all the feature vectors and higher layers containing a subset of previous layers in the
hierarchy. However, this architecture results in a larger index size shown in Section 5.

4



Navigating Spread-out Graph (NSG) [29] favors the “Navigating Node” to make
the search efficient. Still, due to high indexing complexity, NSG does not scale well
when the dimension of the feature vector grows [17]. Navigating the satellite system
graph (NSSG) improves over SSG as it introduces the satellite system graph (SSG)
and a more efficient pruning technique during index building to address the high-
dimensional curse. A parameter can control the sparsity of NSSG, but the chances that
the monotonic search stage fails are more significant as the size and dimension of the
database increases [17]. The Tree-Based Search Graph (TBSG) proposes to handle this
problem with the probability of monotonic search success by combining the Cover Tree
[30] and BKNNG (Bi-directed K-Nearest Neighbor Graph) [31] algorithms [32]. In the
Hierarchical Satellite System Graph (HSSG), the nodes in the dataset are separated
into layers, and NSGs are created on each layer separately. When searching in the
high layer, the search process can skip a long distance, reducing the number of steps
in extensive data [18]. The index processes in separate layers are independent once
the nodes are picked, and the index algorithm can be run distributively, decreasing
the index algorithm’s time consumption. HSSG performs a faster coarse search on
the upper layer with fewer nodes during the search. Following the coarse finds, HSSG
conducts a more precise recursive OK search in the bottom layer at the cost of the
high indexing and memory overhead compared to SSG [18].

Neighborhood Graph Tree (NGT) [33] uses a range search during the graph con-
struction mechanism, and, to avoid a high degree of neighboring nodes and reduce
memory overhead, applies a three-degree adjustment by connecting each feature vec-
tor to its three nearest neighbors throughout the graph. During the query process,
NGT generates a seed using the VP tree [34] and performs a range search to obtain
the nearest neighbors. A significant drawback of NGT is that if the query and seed
are far from each other in the search space, it takes many hops between to reach the
query from the root, and thus increases the retrieval time. One way to address this
problem is to transform the k nearest neighbor graph into an undirected one, and the
other is to construct an undirected graph by continuously inserting elements [35].

Learned Index for large-scale DEnse passage Retrieval (LIDER) ’s [36] hierarchi-
cal architecture is based on clustering and consists of two levels of core models. A
core model is the basic unit of LIDER for indexing and searching data. It consists
of an adapted Recursive Model Index (RMI) and a dimension reduction component
that contains an expanded SortingKeys-LSH (SK-LSH) and a critical re-scaling mod-
ule. High-dimensional dense embeddings are converted into one-dimensional keys and
sorted to make quick predictions by the RMI. However, for a small number of clusters,
each cluster yields many feature vectors, making it more difficult for RMI to learn the
distribution effectively. As a result, the quality of in-cluster retrieval degrades, and for
many clusters, the Recall suffers. The paper [37] capitalizes on contemporary hardware
architectures to enhance the efficiency of approximate nearest neighbor (ANN) search,
and it shows that leveraging the collective computational power of multiple cores and
a heterogeneous memory system can improve performance in large-scale vector search.

Stratified Graph Approach: We propose the Stratified Graph (SG) indexing
(SGI) and retrieval (SGR) algorithms to address the challenges of searching through
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Fig. 4: Illustration of SG index (left) and two different scenarios (center and right)
in a Stratified Graph (SG) search. Orange denotes the starting point of a search, red
denotes the nearest neighbor, and green edges show the path of the greedy algorithm
to the query(shown in green).
high-dimensional and sparse datasets of deep descriptors. It has been shown that state-
of-the-art neighboring ANN methods suffer from a long index-building time and low
Recall for large deep-descriptor databases [26]. This paper compares and contrasts the
new stratified graph approach with state-of-the-art for large sparse descriptor retrieval.

The Stratified Graph Indexing (SGI) addresses the dataset’s sparsity by centering
layers close to the dataset’s center of mass. The index is constructed in each layer as a
bi-directional graph and designed to achieve skip list properties, as presented in detail
in Section 3. Section 4 offers the novel search and retrieval approach. The advantage
of the Stratified Graph is that it does not have a hierarchical structure and that SG
connectivity at the same layer enhances the Recall or the ability to retrieve relevant
results. Note that the SG connections between layers help maintain logarithmic com-
plexity scaling for faster search speed. We present an in-depth comparison of multiple
state-of-the-art methods over six data collections and compare the performance of
the indexing and search methods in the word embedding, visual descriptor, and three
deep descriptor databases in terms of high average Recall and mean average Precision
at any depth of retrieval and fast retrieval times, and index size in Section 5. The
research paper is concluded with a summary and next steps in Section 9.

3 Stratified Graph Indexing (SGI)
The Stratified Graph Indexing (SGI) arranges the feature vectors into layers based
on their distances from the centroid. The center of the target is computed as the
average of the sample or the entire dataset P . The feature vectors closer to the centroid
are stratified in closer layers, while the feature vectors farther away are stratified in
farther layers. Figure 4(left) illustrates the Stratified Graph Indexing (SGI) for the
Euclidean distance, and the layers are stacked into the target shape in 2D. Note
that the layers can be illustrated as a set of rotated squares in 2D illustration for
the Manhattan distance. The bidirectional graph is constructed by connecting each
feature vector to its m-Nearest Neighbors. We specify the maximum number of layers
lmax as log2m + 1. The layer numbers determine the layer width by dividing the
distance to the farthest point from the center. Therefore, all the layers have the same
width. The index building starts from the outermost layer where all the m neighboring
connections for each feature are within the same layer lmax. In layer lmax − 1, each
feature vector is connected to m − 1 neighbors within layer lmax − 1 and 1 neighbor
with layer lmax totaling m neighbors for each feature vectors. Therefore, at any layer
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l, the number of in-layer connections is determined by m− (lmax − l), and next-layer
connections are chosen by (lmax− l). The subsequent layer connections allow the SGI
algorithm to achieve skip list properties, which helps the Stratified Graph Retrieval
(SGR) algorithm a faster search in the graph, which we discuss later in this section.
Higher vertex degree m leads to higher index size, slower retrieval, but higher Recall
as each point is connected to its actual m nearest neighbors.

Algorithm 1: LAYER-
ING

(
X,M, f

)
Input: data vector P,

number of
established
connections m,
outlier filtering
factor f

Output: element list
with assigned
layer

1 numLayer ← ⌊log2 m⌋ ;
2 cen← mean of X ;
3 dist← distances from

the centroid to all data
vectors ;

4 avg ← mean of all
distances ;

5 σ ← standard deviation
of all distances ;

6 ub ← avg + f × σ ;
7 lb ← smallest of dist ;
8 r ← ub−lb

numLayer ;
9 layeredElem← ϕ ;

10 foreach
(
d, p

)
of(

dist, P
)

do
11 l← ⌊dr ⌋ ;
12 add element p to layer

l in layeredElem ;
13 end
14 return layeredElem ;

Algorithm 2: SGI(
SGI, P,m, f, cand

)
Input: stratified graph index SGI,

dataset P , graph degree m,
outlier filtering factor f, size of
dynamic candidate list cand

Output: Updated SGI inserting all
the elements in P

1 graph← ϕ ;
2 layerGraphList← ϕ ;
3 layeredElem← LAYERING(P,m, f) ;
4 foreach layer of layeredElem do
5 clg ← ϕ ;
6 foreach elem of layer do
7 clg ← ADD(clg, elem,m, cand) ;
8 if layerGraphList not empty

then
9 foreach g in

layerGraphList do
10 n← SGR(g, elem, k =

1, cand) ;
11 clg ← update clg

inserting n to the
neighbor list of elem ;

12 end
13 end
14 add clg to layerGraphList ;
15 end
16 m← m− 1 ;
17 end
18 graph← ∪layerGraphList ;

The index-building phase involves determining the layers of each element based on
their distances from the centroid and then constructing a kNN graph within each layer,
from the outermost layer to the innermost layer. The outlier filtering factor f filters
out elements too far from the mean distance and ensures that outliers do not affect
the layer boundary. Algorithm 1 describes the process of determining the layers for
each element and computes the mean distance from the centroid, dist, and standard
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distance deviation σ. Features with more significant spaces than f times σ from the
mean length are filtered out.

The remaining elements are then divided into layers based on their distances from
the centroid, each containing elements within a specific distance range. After the layers
are determined, bidirectional kNN graphs are constructed for each layer (Algorithm
2 line 4 − 15) and stored in the layerGraphList. During the graph construction for
a layer, each element is added to the graph by using Algorithm 3, which performs a
greedy search (Algorithm 4) to find the candidate neighbors of the element.

Algorithm 3: ADD(
clg, elem,m, cand

)
Input: current layer graph

clg, element to add
elem, graph degree
m, size of dynamic
candidate list cand

Output: Update clg
inserting element
elem

1 D ← ϕ //current nearest
neighbor set;

2 mmax ← 2×m ;
3 ep← get the enter point of

clg;
4 D ←

GET-NEAREST(elem, ep, cand);

5 neighbors← add
bi-directional connections
from D to q;

6 for each n ∈ neighbors do
7 nConn←

neighborhood(n) ;
8 if |nConn| > mmax

then
9 nNewConn←

remove farthest
element from
nconn;

10 set
neighborhood(n)
to nNewConn ;

11 end
12 ep ← D;
13 end

Algorithm 4: GET-
NEAREST

(
q, ep, cand

)
Input: query element q, entry point ep,

size of dynamic candidate list cand
Output: cand closest neighbors to q

1 V ← ep //visited elements set;
2 C ← ep //candidate element set;
3 D ← ep // list of nearest neighbors;
4 while C>0 do
5 cmin ← extract nearest neighbor from

C to q ;
6 cmax ← extract farthest neighbor from

D to q;
7 if

distance(cmin, q) > distance(cmax, q)
then

8 break;
9 end

10 foreach c ∈ neighborhood(cmin) do
11 if c /∈ V then
12 V ← V ∪ c ;
13 cmax ← extract farthest

neighbor from D to q;
14 if distance(c, q) <

distance(cmax, q)or|D| < cand
then

15 C ← C ∪ c D ← D ∪ c ;
16 if |D| > cand then
17 remove farthest element

from D to q;
18 end
19 end
20 end
21 end
22 end
23 return D ;
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The algorithm starts building the bidirectional kNN graphs from the outermost
layer. All the neighboring connections m are within the same layer for the outermost
layer since there is no next layer to the outer layer. For the second to the outermost
layer, each feature vector has m−1 neighboring connections within the same layer and
1 neighboring connection with the next-layer feature vector, maintaining a total of m
connections for each feature vector. Next, we step towards the innermost layer, the
in-layer links decrease (Algorithm 2 line 16), and the next-layer connections increase
(Algorithm 2 line 8− 13), maintaining a consistent graph degree of m for all the fea-
ture vectors in dataset P . Algorithm 2 line 9-12 ensures the next-layer connections,
which helps to capture the global structure of the data. New insertion of neighbors in
the graph (Algorithm 2 line 10) is simply an SGR search (Algorithm 5) in the existing
index. The graph is constructed by taking a simple union of all the graphs for each
layer (Algorithm 2 line 18). The stratified graph captures the local and global struc-
ture of the data and can be used for efficient similarity searches. Algorithm 4 describes
retrieving the candidate nearest neighbors to an element. The dynamic list D, which
consists of the cand closest parts found, is maintained during the search. Initially,
this list is populated with entry points. As the search progresses, this list is continu-
ously updated by exploring the neighborhood of the closest element that has not been
evaluated previously in the list. The process continues until the neighborhoods of all
components within the list have been assessed.

The stratified graph indexing (SG) has two phases. In the first phase, elements are
added simultaneously, and the computational complexity is O

(
|P |log

(
|P |

))
. The sec-

ond phase consists of a series of ANN searches at different layers and has a complexity
of O

(
|P |log

(
|P |

))
. Thus, the overall complexity of the index building of the stratified

Graph (SG) scales as O
(
|P |log

(
|P |

))
.

4 The Stratified Graph Retrieval SGR
Algorithm 5: SGR

(
g, q, k, cand

)
Input: graph index g, query element

q, number of nearest
neighbors k, size of dynamic
candidate list cand

Output: k closest neighbors to q
1 ep ← get entry point of g ;
2 D ← ϕ // current nearest neighbor

set;
3 D ← GET −NEAREST (q, ep, cand)

;
4 p ← top k closest from C to q ;
5 return p

The Stratified Graph Retrieval
(SGR) steps are illustrated in
Figure4 (center) and (right). The
search within an index starts with a
random feature vector at the inner-
most layer denoted in orange in
Figure 4(center) and (right), where
each feature has the highest num-
ber of next-layer neighbors. Then
a greedy search with the graph
is applied to retrieve the closest
neighbor (denoted in red in Figure
4(center) and (right)) and top k to
the query (marked in green in Figure
4(center) and (right)) are returned: for this example, k is 1. The heap of size cand
maintains the neighbor list based on their distances to the query along the search
path. The parameter cand also determines the search depth that can be performed
graphically. The layering enhances the search speed of the SGR algorithm by skipping
visiting nodes if the current node and query are some layers apart from each other.
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Figure 4 (center) and Figure 4 (right) utilizing the next layer neighbor that is closer
to the query in the feature space. In other cases, the search algorithm (Algorithm 5)
will perform a simple greedy search graph to retrieve the nearest neighbors to the
query. Algorithm 4 demonstrates how the greedy search process works in the Strat-
ified Graph Retrieval (SGR) technique. The proposed algorithm first identifies the
nearest neighboring point p to the incoming query q by examining the neighbor list of
the starting point ep. Then, it identifies the top k neighbors from p to query q. The
number of hops and the average degree of the items on the greedy path are multiplied
to obtain the total number of distance calculations. The SGR approach benefits from
the outer layer connections that enable it to bypass visiting a considerable portion of
the graph, leading to logarithmic time complexity. Thus, the time complexity of the
SGR technique can be expressed as O

(
log

(
|P |

))
.

5 Proof Of Concept
In this section, we describe how the Stratified Graph (SG) method is compared to six
different state-of-the-art methods: Lightweight approximate Nearest-Neighbor library
(N2) [38], Non-Metric Space Library (NMSlib) [39], Hierarchical Navigable Small
World library (HNSWlib) [28], Facebook AI Similarity Search library (FaissHNSW)
[40], Approximate Nearest-Neighbors Oh Yeah (Annoy) [23], and Hybrid Approximate
Nearest-Neighbor Indexing and Search (HANNIS) [16].

Table 2: Dataset characteristics
Descriptor Feature Dim DB size # Instances %

Dataset Type Extractor in GB in millions of 0s
VisDrone [12] Video [5] 1024 6.2 1.51 69
DOTA2.0 [13] Image [5] 1024 11.1 2.69 80

DIOR [14] Image [5] 1024 5.2 1.27 83
DEEP10M [8] Image [8] 96 3.8 10 0
SIFT10M [41] Image [41] 128 0.52 10 25
Crawl840B [42] Text [42] 300 5.6 2.2 0

Datasets: Table 2 summarizes real data used for the proof of concept. Vis-
Drone dataset contains 1,515,007 instances of 1024 dimensional object deep feature
descriptors extracted from VisDrone video [12]. DOTA2.0 dataset contains 2,697,873
instances of 1024-dimensional object deep feature descriptors extracted from DOTA2.0
[13]. DIOR dataset contains 1,278,863 instances of 1024 dimensional object deep
feature descriptors extracted from DIOR [14]. For the VisDrone, DOTA2.0, and
datasets, we extracted 1024 dimensional object-level deep features from the last fully-
connected layer using pipeline SOD [5]. DEEP10M dataset contains 10 million
instances of 96-dimensional floating vectors. The original 10 million 1024-dimensional
image embedding outputs of the Googlenet’s last fully connected layer [8] were
compressed and normalized into 96-dimensional vectors using principal component
analysis. SIFT10M dataset contains 10,000,000 instances of 128-dimensional inte-
ger SIFT image descriptors [43] extracted from Caltech-256 41

∏
41 whole image

patches [41]. Crawl840B dataset with 300 dimensions and 2.2 million instances of vec-
tor embeddings of common crawl words using GloVe [42]. VisDrone, DOTA2.0, DIOR,
DEEP10M, SIFT10M, and Crawl840B dataset sizes are 6.2, 11.1, 5.2, 3.8, 5.6, 0.516,
and 11.1, in Giga Bytes, respectively.
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Measures The task is visual searching for unknown objects or class discovery in
the petabytes of image and video archives. Therefore, the Mean Average Precision
(MAP@k) and Average Recall (AR@k) must remain consistent as k increases while
keeping average retrieval time and index size comparable to the state-of-the-art for the
indexing and search methods. We also include the word2Vec dataset and the SIFT10M
datasets to illustrate the varying effects of different indexing methods based on the
application. The performance measurement metrics have been used to evaluate the
performance of each technique: MAP@k, AR@k, Average Retrieval time, and Index
size. The size of retrieved se is k, k ∈ [5, 10, 20, 50, 100].
Precision@k for query q, Pkq = (|Mq ∩GTq|) / |Mq|.
Mean Average Precision (APkq) is calculated for each query q by considering
the Precision at each rank position where relevant items are found in depth k:
APkq =

∑
[Pkq× relkq]/|GTq|. The relkq is a binary indicator equal to 1 if the item at

rank k is relevant and 0 otherwise. MAP@k is calculated by averaging the AP values
across all queries in the set Q: MAP@k=

∑
q∈Q APkq

|Q|
Recall@k (R@k) for each query q is defined as: Rkq = (|Mq ∩GTq|) / |Mq|.
AR@k is a measure of the ability of a retrieval system to retrieve all relevant items
from the entire collection across all queries in the set Q. Averaging the Rkq values for
all queries in the set Q produces AR@k: AR@k= 1

|Q| ∗
∑

q∈Q Rkq.
Index size defines the memory cost to save the indexes in the memory.

Setup All experiments were carried out on an Ubuntu 20.04.3 server with 11th
generation Intel® CoreTM i9-11900K @ 3.5GHzX16 CPU with 128GB RAM and
NVIDIA GeForce RTX 3070 8GB mem GPU. The Python implementation of the SG
library can be found in [44].

6 Improving Retrieval Effectiveness
Table 3: MAP and AR comparison for deep descriptors on 100 queries.

MAP@k AR@k
Dataset Method k 5 10 20 50 100 k 5 10 20 50 100

N2 0.24 0.22 0.14 0.09 0.04 0.56 0.56 0.61 0.66 0.69
NMSlib 0.34 0.18 0.09 0.04 0.02 0.48 0.41 0.38 0.32 0.32

HNSWlib 0.76 0.54 0.50 0.49 0.38 0.86 0.79 0.80 0.88 0.91
Vis FaissHNSW 0.58 0.44 0.42 0.18 0.09 0.72 0.68 0.66 0.60 0.48

Drone [12] Annoy 0.40 0.27 0.21 0.19 0.13 0.50 0.50 0.53 0.66 0.73
HANNIS 0.66 0.55 0.43 0.32 0.26 0.74 0.75 0.74 0.80 0.80

SG 0.80 0.79 0.74 0.61 0.36 0.96 0.95 0.96 0.94 0.91
N2 0.80 0.88 0.83 0.80 0.66 0.86 0.97 0.97 0.97 0.97

NMSlib 0.28 0.22 0.13 0.05 0.03 0.58 0.71 0.67 0.62 0.60
HNSWlib 0.96 0.79 0.66 0.65 0.44 0.98 0.93 0.95 0.95 0.95

DOTA FaissHNSW 0.71 0.60 0.46 0.20 0.09 0.84 0.83 0.78 0.74 0.62
2.0 [13] Annoy 0.69 0.48 0.32 0.39 0.33 0.86 0.78 0.75 0.82 0.85

HANNIS 0.94 0.88 0.83 0.75 0.70 0.98 0.98 0.98 0.96 0.96
SG 1 1 0.98 0.72 0.51 1 1 0.99 0.97 0.95
N2 1 0.85 0.78 0.73 0.71 1 0.97 0.98 0.99 0.99

NMSlib 0.27 0.18 0.11 0.05 0.02 0.66 0.74 0.76 0.73 0.73
HNSWlib 0.93 0.91 0.95 0.89 0.90 0.96 0.98 0.99 0.99 0.99

DIOR [14] FaissHNSW 0.9 0.9 0.79 0.37 0.16 0.9 0.9 0.87 0.86 0.72
Annoy 0.71 0.63 0.62 0.52 0.54 0.88 0.87 0.89 0.92 0.94

HANNIS 1 1 1 0.98 0.90 1 1 1 1 0.99
SG 1 1 1 1 0.93 1 1 1 1 0.99
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The stratified Graph approach is compared with six existing methods for 2.7
million DOTA 2.0, 1.3 DIOR, and 1.5 million VisDrone 1024 dimensional vectors
created using [5, 45]. Table 3 shows that Stratified Graph (SG) is the most suitable
algorithm to match deep features and thus uncover similar unlabeled objects for the
DOTA2.0, DIOR, and VisDrone datasets in terms of MAP and AR. Methods N2 and
HNSWlib perform on par with Stratified Graph (SG) and in terms of effectiveness only
for larger retrieval sets as illustrated in Table 3. FaissHNSW and Annoy performance
quickly degrades for k>5, so the methods are unsuitable for deep descriptor database
matching. The NMSlib consistently has low MAP and AR for all k in Table 3.

Table 4: MAP and AR for standard descriptor databases on 100 queries.
MAP@k AR@k

Dataset Method k 5 10 20 50 100 k 5 10 20 50 100
N2 0.30 0.30 0.30 0.21 0.27 0.62 0.75 0.79 0.84 0.87

NMSlib 0.96 0.81 0.60 0.25 0.12 0.98 0.95 0.90 0.76 0.65
HNSWlib 0.70 0.56 0.46 0.33 0.30 0.80 0.75 0.77 0.80 0.85

DEEP FaissHNSW 0.69 0.45 0.29 0.11 0.05 0.78 0.69 0.60 0.56 0.45
10M [8] Annoy 0.30 0.23 0.13 0.22 0.19 0.54 0.58 0.64 0.73 0.78

HANNIS 0.76 0.61 0.49 0.38 0.34 0.86 0.80 0.79 0.80 0.87
SG 0.78 0.72 0.63 0.52 0.41 0.92 0.88 0.87 0.84 0.84
N2 0.56 0.47 0.36 0.24 0.18 0.78 0.82 0.82 0.86 0.87

NMSlib 0.22 0.12 0.06 0.03 0.01 0.64 0.66 0.63 0.58 0.52
HNSWlib 0.85 0.76 0.52 0.27 0.25 0.94 0.91 0.84 0.82 0.84

SIFT FaissHNSW 0.71 0.43 0.24 0.08 0.04 0.86 0.79 0.72 0.58 0.46
10M [41] Annoy 0.13 0.21 0.16 0.09 0.11 0.42 0.44 0.50 0.60 0.71

HANNIS 0.86 0.74 0.63 0.42 0.22 0.94 0.93 0.93 0.92 0.90
SG 0.94 0.83 0.74 0.42 0.27 0.96 0.98 0.96 0.90 0.82
N2 0.61 0.65 0.65 0.65 0.48 0.66 0.78 0.91 0.95 0.97

NMSlib 0.55 0.40 0.26 0.11 0.05 0.78 0.78 0.72 0.64 0.57
HNSWlib 0.2 0.15 0.16 0.18 0.25 0.2 0.25 0.36 0.53 0.67

Crawl FaissHNSW 0.3 0.25 0.16 0.06 0.03 0.42 0.45 0.45 0.38 0.28
840B [42] Annoy 0.53 0.50 0.39 0.35 0.34 0.76 0.76 0.76 0.76 0.74

HANNIS 0.94 0.92 0.91 0.83 0.76 0.98 0.97 0.98 0.96 0.96
SG 0.70 0.64 0.57 0.41 0.31 0.70 0.70 0.70 0.69 0.70

DEEP10M dataset contains 10 million instances of 96-dimensional floating vec-
tors. The original 10 million 1024-dimensional image embedding outputs of the
Googlenet’s last fully connected layer [8] were compressed and normalized into
96-dimensional vectors using principal component analysis. The AP@k and AR@k-
retrievals in Table 4 demonstrate that the Stratified Graph (SG) performs well in the
retrieval effectiveness at higher k. The three best competitors of SG are N2, NMSlib,
and HANNIS, which show inconsistent retrieval performance in Table 4. We also
observe an interesting behavior of N2 and Annoy in Table 4: the effectiveness of
the indexing method is improving with larger k. The HNSWlib performs moderately,
and FaissHNSW consistently performs poorly in Table 4 compared to SG. Though
DEEP10M features were extracted from DNN, the compression with principle com-
ponent analysis alters the original characteristics of the dataset. The Stratified Graph
(SG) is still the most consistent and suitable algorithm for discovering unknown classes
for the DEEP10M dataset.
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Fig. 5: Average retrieval time for 100 nearest neighbor searches.
Table 5: Index size (GB) per dataset.

Method N2 NMS HNSW Faiss Annoy HANNIS SG
Dataset lib lib HNSW

DEEP10M 4.3 5.4 5.3 5.3 12.8 8.7 2.3
SIFT10M 2.2 2.7 2.6 2.6 5.6 3.9 1.1
Crawl840B 2.7 3 3 3 4.6 3.7 2.8
DOTA2.0 11.2 11.5 11.5 11.4 14.2 12.3 3.2

DIOR 5.3 5.3 5.4 5.4 6.8 5.8 1.4
VisDrone 6.2 6.2 6.4 6.4 7.6 6.9 2.5

Table 4 shows the
MAP@k and AR@k
retrieval results for the
SIFT10M dataset for
SG and six compar-
ing methods. SG offers
the dominating per-
formance in MAP@k
retrieval results at all

k ∈ [5, 10, 20, 50, 100] over the comparing methods. HANNIS is shown to be the best
competitor of SG in AR@k for higher retrieval results in Table 4. N2 and Annoy show
an upward trend in AR@k retrieval with larger values of k in Table 4. FaissHNSW and
NMSlib offer consistently lower performance than SG for both MAP@k and AR@k
retrieval results in Table 4. HNSWlib performs well and achieves similar MAP@k
and AR@k for higher retrieval results. The MAP@k and AR@k retrieval results for
the Crawl840B dataset are shown in Table 4. Although the algorithm is specifically
designed for deep descriptor database, the performance of SG in Table 4 is compat-
ible with the comparing methods for the vector representation of word embeddings
data Crawl840B. Even though SG is designed explicitly for similarity search over deep
descriptors, its performance is compatible with state-of-the-art algorithms for other
descriptor databases.

7 Boosting Indexing Efficiency
In this experiment, we analyze the seven methods’ retrieval time on a logarithmic
scale for the six datasets per method. The Stratified Graph (SG) library is written in
Python without any optimization for speed. The retrieval times for SG in Figure 5
shows the promising result on 100 nearest neighbor search. Stratified Graph Retrieval
(SGR) is faster than FaissHNSW, Annoy, and HANNIS library for all six datasets
except Crawl840B in Figure 5. The SGR is faster than N2 for DOTA2.0, DIOR,
and Crawl840B datasets. The NMSlib and HNSWlib are faster than SGR for all six
datasets. The retrieval time per method (5) for k = 100 shows N2, NMSlib, HNSWlib,
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FaissHNSW, and HANNIS, the retrieval time corresponds to the dimension of the
dataset except for the Crawl840B dataset. Annoy has moderate retrieval time and
does not correlate with the dataset size in instances and the extent and type of feature.
The stratified Graph (SG) seems to do well with larger datasets. Table 5 shows the
memory cost of saving the indexes in the memory. SG has the smallest index sizes
compared to the comparing methods for all six datasets other than Crawl840B. Here,
we use 75 trees for Annoy and 16 neighbor connections for the other six methods.
NMSlib, HNSWlib, and FaissHNSW have similar index sizes in the memory. Annoy
and HANNIS have larger index sizes than all the comparing methods. N2, NMSlib,
HNSWlib, FaissHNSW, and HANNIS algorithms are built on the HNSW algorithm.
HNSW arranges the feature vectors in a hierarchical layer of proximity graphs where
the upper layers in the hierarchy are subsets of the lower layer. Therefore, the graph
index containing the proximity graphs has to store way more edge lists than SG,
resulting in a higher memory overhead. Annoy has the most significant index size of all
the comparing methods because it requires storing many trees for better performance.
SG requires up to four times less memory than comparing methods.

Fig. 6: AR, index size, and retrieval time increase with the value of the neighbor
connection m.

8 Ablation Study
The neighbor connection m value ranges from 5 to 48 during index building. The exact
value depends on the characteristics of the deep descriptor databases. The ablation
study for a random dataset of dimension x and size y is illustrated in Figure 6. The
AR increases and approaches 1 as we increase the number of neighbor connections m
from 5 to 48 in Figure 6. We achieve an AR of 1 for this random dataset at around
m = 16. Index size and retrieval time also increase with the value of m. Therefore,
the trade-off between effectiveness and efficiency depends on the number of neighbors
connected m.

9 Conclusion
We propose Stratified Graph (SG) indexing and search as an effective solution for
deep-descriptor matching in large, diverse databases defined for multiple real sets. The
proposed SG method outperforms state-of-the-art indexing and searching approaches
in AR and MAP at the cost of slightly higher retrieval times. The MAP and AR
improve up to 8% at depth 100 for the deep feature databases. SG reduces the memory
cost up to four times compared to the state-of-the-art. Next, we will optimize the
Stratified Graph (SG) method for efficient deep descriptor matching in billion deep
descriptor databases.
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