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Abstract—The abundance of images in Visual crowd-sensing
data makes it difficult to identify and eliminate redundant data
involving manpower and handcrafted techniques. In this paper,
we propose Efficient Visual Indexing and Retrieval for Edge
Crowd-sensing (EVIREC) method that identifies and eliminates
redundant data. EVIREC uses Deep Nural Network (DNN) to
extract features from images and performs Approximate Nearest
Neighbor (ANN) search to retrieve duplicate or near duplicate
images in the database. Using a threshold of distance or similarity
in the feature space, EVIREC can efficiently eliminate redundant
images of high variability in appearance, position, and angles.
The careful design of the indexing algorithm and similarity
match technique ensures that duplicate detection is accurate
and real-time with a minimum computational overhead. The
experimental results demonstrate that EVIREC surpasses state-
of-the-art hashing-based and CNN-based methods in terms of
performance on the CIFAR10, CIFAR100, and Birds data sets.
Moreover, to test the robustness of our proposed model, we
combined the three data sets and presented the accuracy across
560 classes. EVIREC successfully eliminates redundant images
with an impressive rate of up to 99.99%, making it the most
robust method for the image deduplication task in visual crowd-
sensing image data.

Index Terms—Data redundancy, crowd-sensing, Visual crowd-
sensing, Big data, Mobile crowd-sensing, Image deduplication.

I. INTRODUCTION

The rapid development of Internet of Things (IoT) devices
has led to an explosion of data being generated from various
sources. This data must be stored, processed, and analyzed to
extract valuable insights and make informed decisions.

One emerging paradigm addressing this challenge is Mobile
crowd-sensing (MCS) [10], [26], which involves volunteers
contributing data obtained by their sensor-enhanced mobile
devices. MCS leverages the capabilities of smartphones and
other mobile devices to collect data from the environment.
It can use different sensing modalities, including audio, pic-
tures/videos, and numeric quantities such as GPS coordinates,
temperature, and air quality. Among these modalities, visual
crowd-sensing (VCS) has gained popularity. visual crowd-
sensing utilizes the in-built cameras of intelligent devices,
enabling users to contribute to various tasks by sending images
or video information from their surroundings. Compared to
traditional approaches like mounting still cameras in specific
locations, visual crowd-sensing provides more informative and
diverse data. It allows for real-time data collection from dif-
ferent perspectives and locations, making it particularly useful
for environmental monitoring, urban planning, and disaster
management applications.

Fig. 1. Deduplication workflow for Crowd-Sensing images.

Several successful projects have been proposed based on
VCS, demonstrating its potential. Examples include Creek-
Watch [18], FlierMeet [8], PhotoCity [36], PhotoNet [37],
WreckWatch [39], Mediascope [14]. These projects have
shown that engaging a crowd of mobile device users makes
it possible to gather a large volume of data from various
sources, improving the coverage and accuracy of the collected
information.

Visual crowd-sensing is challenging when dealing with vast
images and videos. There is a high chance of redundancy in
the content as multiple users capture and contribute similar
or identical information. The task has evolved to semantic
aggregation: the system needs an efficient way to identify and
eliminate redundant content, as storage is not unlimited and
search time increases with larger databases. The search for
(near) identical images has posed a significant challenge with
the rise in VCS’s popularity as users worldwide share many
images. However, a considerable portion of these uploaded
images is either slightly altered or exact replicas of an original
image [23]. This abundance of duplicate images in the image
storage system drives up costs of storing and accessing content
and negatively impacts the performance when the system
searches a massive database of duplicate or near-duplicate
images, drives up the storage cost and [29].

The need for crowdsensing data management arose from
the storage and processing limits, and the simplest techniques



involve data deduplication. As shown in Figure 1, in the
deduplication process, the redundant data is identified and
stored only once, or data aggregation methods to consolidate
similar information from multiple sources [10]. Recent ma-
chine learning techniques can analyze and process the data,
identify patterns, extract relevant information, and summarize
the crowd-sensing data. However, efficiently indexing or re-
trieving images from an extensive image cloud storage system
proves highly challenging [17].

Therefore, there is a need for an efficient real-time or online
technique that can filter out duplicates of an original image
before sending it to the storage (See Figure 1), thus enhancing
overall system storage efficiency. In this paper, we propose a
novel approach called Efficient Visual Indexing and Retrieval
for Edge Crowd-sensing (EVIREC) to address the issue of
redundant data in Visual crowd-sensing (VCS) image data.
EVIREC aims to efficiently identify and eliminate duplicate
or near duplicate images to the previously stored image data
from the visual crowd-sensing data.

The suggested approach entails extracting and storing fea-
tures from newly arrived images incrementally. These features
serve as descriptive representations of the images, capturing
crucial visual attributes invariant of scale, angle, and ap-
pearance. By incrementally extracting and preserving these
features, we establish a database of pre-existing features and
index them in a way that allows for efficient searching. This
enables us to determine the similarity between an incoming
image and the previously stored images.

To determine the similarity between an incoming image and
the existing features in the database, we propose Hierarchical
Layered Graph (HLG), an Approximate Nearest Neighbor
(ANN) search to retrieve the most similar item from the feature
database. ANN search is chosen over the traditional k-Nearest
Neighbor (k-NN) approach because it can handle large-scale
databases. ANN search is more suitable for large databases
consisting of millions of images, as it can handle searching
in a million-scale feature database [15], [27], [28], [31]. In
contrast, k-NN becomes progressively slow when dealing with
high-dimensional features and large databases [19].

After retrieving the most similar feature using the HLG
search, EVIREC employs either the Euclidean distance in the
feature space or the cosine similarity score to determine the
similarity of an incoming image. If the incoming image is
deemed sufficiently similar to the retrieved feature according
to some threshold, it is classified as redundant and can be
discarded. Conversely, if the image is distinctive enough, it is
considered unique. Then, the feature is included in the existing
feature database, and the incoming image is stored in the
image database. EVIREC reduces the storage requirements
and processing overhead associated with redundant data in
visual crowd-sensing big data. By eliminating duplicate or
near duplicate images, the data set becomes more compact and
efficient, improving the overall performance of visual crowd-
sensing applications. In summary, we make the following
contributions-

1) We propose the EVIREC framework, which, to our

knowledge, is the first method that utilizes graph-based
approximate nearest neighbor search in deep features to
accomplish the image de-duplication task.

2) We propose a novel graph-based approximate nearest
neighbor indexing and search method, Hierarchical Lay-
ered Graph (HLG), in an extensive deep descriptor
database to efficiently retrieve the most similar image
descriptor.

3) We employ normalized cosine similarity to determine
whether a query image closely resembles any image in
the database.

The rest of this article is organized as follows. Section II
summarizes related work, and section III discusses our pro-
posed EVIREC method and training pipeline in detail. Next,
Section IV describes the experimental data set distribution
and characteristics. In Section V, we evaluate the proposed
framework and show our experimental results by comparing
the latest deduplication benchmarks over three consumer and
crowd-sensing data sets. Finally, we summarize the findings
in Section VI.

II. RELATED WORK

Data selection and redundancy elimination are the critical
challenges in visual crowd-sensing data [9]. Several image de-
duplication methods have been proposed over the past few
years, which can be categorized mainly into Hashing-based
[4], [34], [38], [42] and Convolutional Neural Network (CNN)
based methods [17], [24].

This idea is easy and uncomplicated: If more people report
an observation, it is more likely to be significant, whereas
things with few observers can be viewed as outliers. Data
utility or usefulness in TaskMe [7] is measured by predefined
task restrictions rather than clustering findings. A photo is
considered an outlier in PhotoNet [37] if it is geographically
close to a famous picture cluster yet visually distinct from
the group. However, lone images are sometimes relevant, and
the pertinent sensing targets might be found in areas with
few observers. EVIREC handles this problem by keeping the
lone images if they differ in features from other images in the
database. The creation of data selection strategies for visual
crowd-sensing has been extensively studied. For instance,
CrowdPic [6] presents a general picture collection framework
that facilitates effective picture grouping and redundancy re-
moval based on multi-dimensional job constraints. To support
online crowd-sourcing photo grouping and represent the task
requirements, the pyramid-tree (PTree) method is presented.
Some visual crowd-sensing programs try to acquire data selec-
tion techniques from human experience or expert knowledge.
The computational domain-specific filming rules in MoVieUp
[40] include the 30-degree rule and the less shot-switching
concept (there should be at least 30 degrees’ variation between
shooting angles to prevent jump cuts in camera selection). A
framework called MoViMash [32] compiles video clips of an
event shot from various distances and viewpoints. They used a
hidden Markov model to learn from the experiences of expert



Fig. 2. Proposed EVIREC pipeline.

editors, such as choosing the shooting angle and distance, shot
length, and transitions.

A. Hashing-based

Image hashing involves examining the content of an image
and generating a distinct identifier based on its specific char-
acteristics. The image is processed through a hash function,
resulting in a value representing its visual properties. Similar
images should produce similar hash values, and by comparing
the variances in hashes, visually similar images are identified.

QHash [25] was explicitly designed for low-variance image
de-duplication, which aims to minimize the occurrence of
false positives and false negatives during the de-duplication
process, thereby improving the overall accuracy and efficiency
of image de-duplication systems. The algorithm comprises
three main steps: pre-processing, feature extraction, and hash
code generation. In the pre-processing step, the input image
is resized and converted to grayscale for efficiency. Feature
extraction involves quantization and salient point detection
algorithms to capture global and local features. The hash
code generation combines the extracted features with a hash
function to produce the final hash code.

The AHash algorithm [4] downsamples an image to a
size of N × N pixels (8 × 8 in this paper) to remove
high frequencies and details. After that, the RGB image is
converted to grayscale, and the average pixel value Pmean
is determined. Each pixel Pval is then compared to Pmean,
and a bit value Pbit of 1 is assigned if Pval is greater than
Pmean; otherwise, 0. The resulting 8 × 8 binary matrix is
flattened into a 64-bit integer to produce the final hash. AHash
is a fast and straightforward hashing algorithm. However,
directly comparing with the mean might not provide consistent
outcomes.

The initial step of the Dynamic Hashing (DHash) algorithm
[38] involves resizing the image to a resolution of N × (N + 1)
(8 × 9 in this particular paper). After that, the RGB image is
converted to grayscale. To convert the pixels into binary form,
DHash examines the neighboring pixels. In detail, each pixel is
assigned a value of 1 if its pixel value is greater than the pixel
to its right; otherwise, it is assigned a value of 0. As a result
of this process, an 8 × 8 binary matrix is created. The DHash

algorithm improves upon AHash by comparing adjacent pairs
of pixels, thereby preserving more local patterns.

The Perceptual Hashing (PHash) algorithm [42] involves
resizing the image to a resolution of 32 × 32 pixels. Then, the
algorithm utilizes the Discrete Cosine Transform (DCT) [1] to
convert the spatial RGB values into a set of frequencies and
magnitudes. Only the top-left 2-dimensional matrix measuring
8 × 8 is retained to eliminate the high-frequency elements. The
average value of this matrix is calculated to create a binary
matrix, which is subsequently flattened into a 64-bit integer
serving as the hash representation.

On the other hand, the paper [5] introduced a rapid image
retrieval method that converts 128-DSIFT features into 128-
bit binary representations. Hash values are computed for each
feature, and the hamming distance is utilized to identify sim-
ilar images. This technique significantly decreases the search
retrieval time. The Wavelet Hashing (WHash) algorithm [34]
shares similarities with PHash, with the key difference being
its utilization of the Discrete Wavelet Transform (DWT) [33]
for the conversion of spatial RGB values into frequencies and
magnitudes.

B. Deep Neural Network Modeling

A deep CNN model is trained using a large data set of
diverse images to learn and extract discriminative features
[17]. The model is trained to map similar images to close
feature representations while maintaining a significant dis-
tance for dissimilar images. During the online de-duplication
phase, when a new image is uploaded to the cloud system,
it undergoes a series of pre-processing steps. These steps
involve resizing, normalization, and feature extraction using
the pre-trained deep CNN model. The extracted features are
then compared with the features of existing images in the
cloud storage. To efficiently search for duplicate images, an
indexing mechanism based on locality-sensitive hashing (LSH)
is employed. LSH enables fast approximate nearest neighbor
search, quickly identifying potential duplicates.

Cost-effective convolutional neural nets training based on
image deduplication (CE-Dedup) [24] focuses on assessing
the impact of near-duplicate images on CNN training per-
formance. CE-Dedup combines a hashing-based image de-
duplication approach with downstream CNN-based image



classification tasks. The framework aims to balance a high
de-duplication ratio with maintaining stable accuracy. This is
achieved by heuristically adjusting the de-duplication thresh-
old. The goal of CE-Dedup is to make CNN training more
cost-effective by reducing redundancy in the training data
without sacrificing performance.

A technique was proposed by S. Thaiyalnayaki et al. [35]
to identify near-duplicate images by utilizing the Speeded-Up
Robust Feature (SURF) algorithm and the segmented minhash
algorithm. The SURF algorithm is employed to extract image
features, while the segmented minhash algorithm is used to
index the similarity of the extracted images. Locality Sensitive
Hashing is applied to index the near-duplicate images.

Kaur et al. propose a CNN-based online image deduplica-
tion technique focused on the cloud storage system [17]. The
proposed Deep CNN-based method detects exact and near-
exact images using cross-domains, even in perturbations due
to blur, noise, compression, lighting variations, and many more
external influences. In the experiments, the paper shows that
the proposed deep CNN for the online image deduplication
technique outperforms existing hashing methods regarding
image matching accuracy and performance. A Hot Decom-
position Vector (HDV) is also integrated for image patch
generation to store efficiently dissimilar parts of near-exact
images.

In this paper, we propose EVIREC. EVIREC handles the
camera angle and orientation problem by training a DNN
model with varying images in different orientations, lighting,
and angles. The DNN model can capture these conditions and
extract features from an image database.

III. METHODOLOGY

EVIREC works to detect and eliminate redundant images
in an existing database and build a database without adding
redundant images. Fig.2 shows the proposed pipeline of our
EVIREC method. There are two main phases, Feature extrac-
tion using DNN and ANN search, which we discuss later in
detail. The whole process is done incrementally by scanning
one image at a time. Each image is passed to the DNN
for feature extraction, and a feature vector is produced for
similarity search. Then, we load existing features from the
feature database, which are indexed using the Hierarchical
Layered Graph (HLG) for faster search processing. Next, an
ANN searching method is applied to search for the most
similar image features w.r.t the query feature. During the ANN
Search using HLG, we retrieve the most similar image feature
from the feature database to an incoming query image feature.
The incoming query image redundancy status is decided based
on some evaluation metrics (Discussed in Section III-C). The
metrics threshold can be varied to decide an image’s redun-
dancy scale. For example, suppose the similarity threshold
value is set to 80%. In that case, any existing features in
the database matching 80% with the incoming query feature
will be discarded for saving consideration in the database.
Setting a low similarity threshold restricts the number of saved

Fig. 3. Illustration of a Hierarchical Layered Graph (HLG) indexing. Each
feature vector connects to its M -Nearest Neighbor within the same layer and
1-Nearest Neighbor in the next layers.

features and increases the True Positive rate (TP) in the feature
database.

A. Feature extraction with Deep Neural Network (DNN)

The first step toward eliminating data redundancy in the
crowd-sensing setting is efficiently representing the data. From
the data set section as we can see that the input data in our
pipeline is images. A very common method of representing
image data is in vector format. Many methods are devised
to represent the image data in vector format; using DNN to
extract feature vectors is the most popular. The success of
DNNs for feature extraction is mainly due to the availability
of the data and the computational power. Based on the previous
success of DNNs [2] for object detection in images, we have
chosen to use ResNet50 architecture for generating feature
vectors for the image data. From Figure 2, it can be seen that
the ResNet50 model is built upon many Convolution(Conv)
blocks stacked one after one. The first seven blocks in the
ResNet50 network are Convolutional (Conv) blocks with 64
channel outputs and only one stride at the beginning. Then
Next block starts with a Conv block with a stride of 2 and
an output channel of 128. This CNN fashion follows onward
with 256 and 512 output channels. Next, we perform average
pooling on the last Conv layer output. Finally, we feed the
output from the average pool into Multi-layered perceptions
(MLPs) and save the output from this layer as a feature in our
database in 512 lengths of a vector.

B. Approximate Nearest Neighbor (ANN) search using Hier-
archical Layered Graph (HLG)

a) Index building: Fig. 3 illustrates the index structure
of our proposed Hierarchical Layered Graph (HLG) approach.
Hierarchical Layered Graph (HLG) first arranges all feature
vectors in a hierarchical level where the higher level contains



fewer feature vectors and the lower level contains more feature
vectors. A probability function, P

(
Lv

)
= F

(
Lv, lm

)
, is used

to determine the level of insertion of an element. The value
Lv denotes the level at which an element will be inserted. The
probability function normalized by the ”level multiplier” lm,
where lm=0 indicates that vectors are only inserted in level 0,
gives the probability of a vector insertion in a given level. We
achieve the highest performance when we reduce the overlap
of shared neighbors between levels. We can reduce overlap
by decreasing lm. However, doing so, as more vectors are
moved to the level 0, increases the average number of search
traversals. After generating the levels, the Hierarchical Layered
Graph (HLG) arranges the feature vectors in layers based on
their distances from the centroid, where layer 0 contains the
feature vectors that appear to be closer to the centroid and layer
L contains the feature vectors that are the farthest from the
centroid. The bidirectional graph is constructed by connecting
each feature vector to its M -Nearest Neighbor within the same
layer and 1-Nearest Neighbor in the next layers. Therefore, the
feature vectors of layer 0, 1, 2, ..., L will have M+L−1,M+
L− 2, ...,M neighboring nodes in the final graph. The value
of M is responsible for the index size and recall. Typically,
the optimal value of M ranges from 5 to 48 where a larger
value of M leads to a larger index size and higher recall.

b) k-Nearest Neighbor (k-NN) retrieval: Fig. 4 shows
the k-NN retrival approach of our proposed Hierarchical
Layered Graph (HLG) approach. The search within an index
starts with a random point at the upper level where the edges
are the longest, and then a greedy search is used within that
level until it reaches a local optimum (Fig. 4). The search then
switches to the lower level, where the edges are shorter. This
time, the starting point is the previous local optimum, and
this process continues until the query is reached and the top
k-NN to the top k is returned. Layering helps the Hierarchical
Layered Graph (HLG) avoid visiting all neighboring nodes
within the same layer if the query is in a different layer in
the feature space. Moreover, the Hierarchical Layered Graph
(HLG) search skips visiting nodes in layers as well if the
current node and query are some layers apart from each other
in the feature space (Algorithm 3 Line 4).

The index construction outlined in the Algorithm 1 has
two phases: (1) building a hierarchical level of proximity
graphs within the same layer and (2) adding next-layer
connections. The exponential decaying probability distribu-
tion

(⌊
−log2

(
unif

(
0, ..., 1

)
×ml

)⌋)
determines the maxi-

mum level for each element, where ml is 1
log2(M) . Therefore,

the maximum number of levels in the hierarchical graph can be
controlled by the maximum established connection parameter
M . The insertion process begins at the top level and traverses
the graph greedily to locate the closest cand neighbors of
the inserted element x. The process is then repeated utilizing
the closest neighbors obtained in the previous level as entry
points for the algorithm to carry on with the search from the
subsequent level. The greedy search algorithm in Algorithm 3
is used to find the closest neighbors, which we discuss later
in this section.

Algorithm 1: BUILD
(
HLG,X,M, cand, f

)
Input: hierarchical layered graph HLG, data vector X,

number of established connections M, size of
dynamic candidate list cand, outlier filtering
factor f

Output: Update Hierarchical Layered Graph (HLG)
inserting all elements

1 graph ← ϕ
2 foreach x of X do
3 graph ← ADD

(
x,M, cand

)
4 end
5 layeredElem ← LAYERING

(
X,M, f

)
//Algorithm

2
6 foreach layer of layeredElem do
7 clg ← get the graph for layer
8 nlg ← get the graph for (layer + 1)
9 foreach elem of layer do

10 n ← SEARCH
(
nlg, elem, k = 1, cand = 1

)
11 update graph inserting n to neighbor list of

elem
12 end
13 end

In the next phase of index construction, we determine the
layers of each element based on their distances from the
centroid (Algorithm 2). The control parameter f is used as an
outlier filtering factor during the layer determination process.
Elements that are f standard deviations from the mean distance
do not participate in the layer determination process. The
outlier filtering factor f ensures the outliers do not drag the
layer boundaries toward them. Next, we extract the graphs
for each layer from the previously constructed network. For
each inner layer, we identify the closest nearest neighbor
in the subsequent layers using the greedy search algorithm
(Algorithm 3). Finally, we update the previous network by
adding the closest neighbor found in the subsequent layers.

The greedy search process (Algorithm 3) starts at the top
level with the entry point ep of the input network and extracts
the closest neighboring point p to the incoming query q at
that level. Then the search switches to the next lower level
and starts with the previous local optimum p, and this process
continues until the second lowest level. At the bottom level
of the network, g, the algorithm extracts the list of neighbors
cand from p and returns the closest neighbors k to q based
on their distances.

Search complexity Each Hierarchical Layered Graph
(HLG) index level is built as a navigable small-world graph,
allowing the greedy search path’s hop count to scale logarith-
mically. Hierarchical Layered Graph (HLG) indexing builds
the graph with a set maximum number of links for each
element, ensuring a consistent average degree for each element
at a certain level. The number of hops and the average degree
of the items on the greedy path is multiplied to get the overall
amount of distance calculations. As a result, each level of



Fig. 4. Illustration of a Hierarchical Layered Graph (HLG) retrieval. Red denotes the starting point in each level, blue denotes the local optimum in each
level, and green arrows show the direction of the greedy algorithm to the query(shown green).

Algorithm 2: LAYERING
(
X,M, f

)
Input: data vector X, number of established

connections M, outlier filtering factor f
Output: Dictionary of elements with their designated

layer
1 numLayer ← log2 M
2 cen ← mean of X
3 dist ← distances from centroid to all data vectors
4 avg ← mean of all distances
5 σ ← standard deviation of all distances
6 ub ← avg + f × σ
7 lb ← smallest of dist
8 r ← ub−lb

numLayer

9 layeredElem ← ϕ
10 foreach

(
d, x

)
of

(
dist,X

)
do

11 l ← d
r

12 add element x to layer l in layeredElem
13 end
14 return layeredElem

Algorithm 3: SEARCH
(
g, q, k, cand

)
Input: graph index g, query element q, number of

nearest neighbors k, size of dynamic candidate
list cand

Output: k closest neighbors to q
1 ep ← get entry point of g
2 L ← get highest level of g
3 for l ∈ L,L− 1, . . . , 2 of g do
4 p ← extract nearest neighbor to q starting with ep
5 ep ← p
6 end
7 C ← extract cand neighbors to p at bottom level of g
8 neighbors ← top k closest from C to q
9 return neighbors

the Hierarchical Layered Graph (HLG) has logarithmic search
complexity. At any given level l with Nl elements, the search
complexity is O

(
log

(
Nl

))
, where Nl increases from the top to

the bottom. The maximum number of elements allowed at the

bottom level is N . Therefore, the general search complexity
of the Hierarchical Layered Graph (HLG) is determined by
O
(
log

(
N
))

.
Index building complexity The Hierarchical Layered

Graph (HLG) index is constructed in two steps. In the first
step, each element is added one at a time by iterative inser-
tions, simply a series of ANN searches at different levels.
Thus, the first phase has a complexity of O

(
N.log

(
N
))

. The
second phase of Hierarchical Layered Graph (HLG) index
building is also a series of ANN searches at different layers.
Thus, similar to the first phase, the second phase has a com-
plexity of O

(
N.log

(
N
))

. Therefore, the overall complexity of
the index building of the Hierarchical Layered Graph (HLG)
scales as O

(
N.log

(
N
))

.

C. Similarity Metrics

We have used two different measurement techniques to
evaluate our proposed de-duplication method. As with other
previous works, we use traditional Euclidian distance-based
similarity search. Moreover, we use cosine similarities as
an efficient way of similarity finding among feature vectors
leveraging the idea from contrastive learning [11].

Normalized cosine similarity: is a simple process of
measuring pair-to-pair relationships based on the similarities
between different pairs, such as query-negative samples. We
leverage the idea of feature discrimination calculation using
cosine similarities from contrastive learning and integrate it
into our pipeline for similarity calculation. Many versions of
contrastive learning are available for feature representation
learning [12], [30], [41]. Previous works [3], [16] used co-
sine similarity with Informative Noise Contrastive Estimation
(InfoNCE) [30] and successfully discriminated vectors in
feature space. Motivated by this, we also use the normalized
cosine similarity because of its simplicity and faster finding
of dissimilarities between features.

sim(u, v) = uT /(||u|| ∗ ||v||) (1)

x = x/max(||x||p, ϵ) (2)

The formula for calculating the normalized cosine similarity
score is presented in Eq. 1. Here, Query is the feature



Fig. 5. Illustration of class diversity across experimental data sets.

vector from the query image. On the other hand, Negative
features are all the other feature vectors saved in the server
database. Before performing the cosine similarity calculation,
we normalize any vector x using Eq. 2. The Eq. 1 captures the
similarity of two features, u and v. The output ranges from 0
to 1, where 0 denotes no similarity and 1 denotes very high
similarity.

Distance Based similarity: We have also used Euclidean
distance for quantifying the similarity between the query
image vector and all other vectors saved in the data set. This
method is standard and has successfully calculated similarities
in high-dimensional feature space over the years. It calculates
a straight-line distance between two points, considering the
differences along each dimension and determining the variance
between vectors. For example, if u = (x1, y1, z1, . . . , n1)
and v = (x2, y2, z2, . . . , n2) is considered two image feature
vector then we can calculate the distance/dissimilarity between
them as below Eq. 3:

dist(u, v) =
√
(x2 − x1)2 + (y2 − y1)2 + . . .+ (n2 − n1)2

(3)
However, euclidean distance metrics fail when all the feature

dimensions do not carry equally valued information, and
normalization or feature scaling might be required in this
scenario. Due to this reason, our paper does not rely on single
performance metrics; instead, uses normalized cosine similar-
ity to verify the correctness of the deduplication process.

IV. DATA SET

To evaluate the performance of our proposed EVIREC
method, we have used two publicly available data sets, CI-
FAR10 and CIFAR100 [20], and one crowd-sensing data set

TABLE I
EXPERIMENTAL DATA SET FOR IMAGE DEDUPLICATION.

Data Number of images Size (MB) Number of classes

CIFAR10 [21] 50,000 47.4 10
CIFAR100 [22] 50,000 114.2 100

Birds 70,626 1600 450
Combined 170,626 1761.6 560

collected from iNaturalist [13] online database. Each data set
comes with various classes showing the data set’s diversity.

CIFAR10: Our first experimental data set is a very well-
known benchmark data set CIFAR10, for computer vision
tasks. There are a total of 60,000 color images in the data
set, each of which is a 32 × 32 pixel resolution. The data
set is divided into ten classes, each containing 6,000 images.
The classes include common objects such as airplanes, au-
tomobiles, birds, cats, deer, dogs, frogs, horses, ships, and
trucks. The examples from different classes are illustrated in
Figure 5. We split the data set into train and test sets. The train
set contains 50,000 images, and the test set contains 10,000
images, where all classes are equally distributed.

CIFAR100: The CIFAR-100 data set is a widely used
benchmark data set in data deduplication. CIFAR-100 consists
of 100 classes, with each class containing 600 images. More-
over, these categories are divided into 20 superclasses, each
containing five classes. The superclasses capture higher-level
semantic information, while the individual classes represent
specific objects or characteristics. The data set contains 50,000
training and 10,000 test images, equally distributed across
different classes. Each color image in CIFAR-100 has a 32×32
pixels resolution. We choose this data set due to its challenges
from relatively low-resolution images and the presence of fine-



grained classes. The data set contains the hierarchy of super-
class and sub-classes as shown in Figure 5. Deduplication
becomes harder as many classes share visual similarities,
requiring models to learn subtle discriminative features.

iNaturalist-Birds: Our last experimental data set is from
the iNaturalist. The iNaturalist Birds data set is a comprehen-
sive collection of bird species images prepared for bird clas-
sification and identification. It is derived from the iNaturalist
platform, a popular online community for nature enthusiasts
to share observations and photographs of various species. The
iNaturalist Birds data set contains over 70,000 bird images
covering many species worldwide. We have chosen 450 differ-
ent bird classes with equal distribution for the de-duplication
task. The inter-class similarities and intra-class dissimilarities
make the data set perfect (See Figure 5) for exploring de-
duplication tasks. We have 73,776 color images in the data set,
with dimensions of 224×224 pixels. The training set contains
70626 images, and we perform the deduplication task on the
training set for each method.

Combined data set: To verify the robustness of the de-
signed pipeline, we created a combined data set that introduced
challenges from three of our benchmark data sets. Using
this data set, we investigate the performance of our proposed
pipeline by comparing different SOTA methods when a very
high and diverging amount of classes is introduced. Table I
shows that our combined data set consists of 170,626 images
and holds 560 classes. The class diversity of the combined
data set is presented in Figure 5.

TABLE II
NOTATION TABLE.

Symbol Description

Thd Euclidean distance threshold
Ths Cosine similarity threshold
Dup Number of duplicate or near duplicate images
δs Database size reduction in megabytes
ξ Percentage of redundancy elimination
Rt Number of redundant images in the data set

V. EXPERIMENT

We compare the performance of our EVIREC methods
with hashing-based methods and CNN-based methods. The
evaluation is conducted using three metrics:
Number of duplicates found (Dup): This metric measures
the ability of each method to identify and detect duplicate
images within a data set. Duplicate images refer to multiple
copies or instances of the same image. The higher the number
of duplicates found, the better the method’s performance in
identifying and flagging redundant images.
Database size reduction in megabytes (δs): This metric
quantifies the reduction in storage space achieved by applying
each method to the data set. It measures the difference in
the size of the original data set and the size of the data set
after applying the method. A larger reduction in database size
indicates better efficiency in terms of storage requirements.

TABLE III
DE-DUPLICATION RESULTS ON THE CIFAR10 DATA SET WITH 50000

IMAGES AND TOTAL SIZE OF 47.4 MB.

Method Thd Dup δs ξ

PHash 10 2292 1.97 4.58%
PHash 15 22128 19.26 44.26%
PHash 20 48985 43.00 97.99%

DHash 10 2088 1.81 4.17%
DHash 15 27874 24.37 55.75%
DHash 20 48541 42.61 97.10%

WHash 10 31260 27.18 62.53%
WHash 15 44297 38.78 88.61%
WHash 20 49617 43.56 99.25%

AHash 10 29722 25.81 59.45%
AHash 15 45458 39.82 90.93%
AHash 20 49509 43.46 99.04%

EVIREC 10 44297 38.78 88.61%
EVIREC 15 49235 46.71 98.49%
EVIREC 20 49857 47.27 99.73%

Percentage of redundancy elimination (ξ): This metric
assesses how much each method eliminates redundancy within
the data set. Redundant images provide no additional informa-
tion compared to other images in the data set. The percentage
of redundancy elimination is calculated using the equation
referenced as Eq. 4, where Rt represents the total number
of redundant images in the data set.

To calculate the percentage of redundancy elimination, the
total number of images in the data set is subtracted from the
number of classes in that data set. This subtraction yields
the number of redundant images, as classes represent unique
categories, and any additional instances of images within
the same class are considered redundant. Consequently, the
optimal number of unique images in any data set equals the
number of classes present in that data set.

Overall, the comparisons aim to evaluate the performance of
EVIREC method in terms of its ability to identify duplicates,
reduce database size, and eliminate redundancy compared to
other hashing-based and CNN-based methods. The metrics
provide quantitative measures to assess the effectiveness of
each method, and the percentage of redundancy elimination
specifically highlights the value of unique images within a data
set based on the number of classes. All the useful notations
in this section are enlisted in Table II.

ξ =
Dup

Rt
× 100% (4)

A. Comparison with hashing-based methods

We conduct a comparative analysis of our EVIREC method
against four state-of-the-art hashing-based methods, namely
WHash [34], PHash [42], DHash [38] and AHash [4] for
the image deduplication task. To evaluate each method, we
apply three different distance thresholds (Thd = [10, 15, 20])
to experimental data sets. The performance of the comparing



TABLE IV
DE-DUPLICATION RESULTS ON THE CIFAR100 DATA SET WITH 50000

IMAGES AND TOTAL SIZE OF 114.2 MB.

Method Thd Dup δs ξ

PHash 10 1817 3.63 3.64%
PHash 15 19811 41.36 39.70%
PHash 20 48933 104.11 98.06%

DHash 10 4313 8.46 8.64%
DHash 15 30517 63.96 61.15%
DHash 20 48650 103.42 97.49%

WHash 10 31494 64.98 63.11%
WHash 15 43975 92.64 88.12%
WHash 20 49547 105.33 99.29%

AHash 10 29818 61.61 59.75%
AHash 15 45063 95.12 90.30%
AHash 20 49458 105.13 99.11%

EVIREC 10 43993 92.65 88.13%
EVIREC 15 49551 105.34 99.30%
EVIREC 20 49744 114.07 99.69%

methods on CIFAR10, CIFAR100, and Birds data sets is
presented in Table III, Table IV, and Table V, respectively.

TABLE V
DE-DUPLICATION RESULTS ON THE BIRDS DATA SET WITH 70626 IMAGES

AND TOTAL SIZE OF 1600 MB.

Method Thd Dup δs ξ

PHash 10 5826 120.38 8.30%
PHash 15 37365 787.56 53.24%
PHash 20 69558 1490.6 99.11%

DHash 10 3683 77.26 5.24%
DHash 15 44437 945.54 63.32%
DHash 20 69123 1481.51 98.50%

WHash 10 34716 727.45 49.47%
WHash 15 59241 1261.10 84.42%
WHash 20 70002 1500.12 99.75%

AHash 10 33244 692.34 47.37%
AHash 15 61781 1317.24 88.03%
AHash 20 69839 1496.70 99.52%

EVIREC 10 59241 1261.10 84.42%
EVIREC 15 68495 1550.3 97.60%
EVIREC 20 69982 1554.7 99.81%

The results from the experiment conducted on CIFAR10
(see Table III) demonstrate that EVIREC successfully iden-
tifies 49,857 duplicate images out of a total of 49,990 im-
ages, resulting in a redundancy elimination rate of 99.73%
when using a distance threshold of Thd = 20. Moreover,
EVIREC effectively reduces the size of the database by 47.27
megabytes, compared to the original size of 47.4 megabytes.
WHash, a competing method, achieves similar results to
EVIREC by detecting 49,857 duplicate images, leading to
a redundancy elimination rate of 99.25% and reducing the
database size by 43.56 megabytes. On the other hand, PHash,
DHash, and AHash demonstrate redundancy elimination rates
of 97.99%, 97.10%, and 99.04%, respectively.

TABLE VI
DE-DUPLICATION RESULTS ON THE COMBINED DATA SET WITH 170626

IMAGES AND TOTAL SIZE OF 1761.6 MB.

Method Thd Dup δs ξ

PHash 10 13582 155.14 7.98%
PHash 15 107545 1079.46 63.23%
PHash 20 169313 1654.46 99.55%

DHash 10 13950 117.67 8.2%
DHash 15 126727 1229.88 74.51%
DHash 20 168766 1647.72 99.23%

WHash 10 110299 933.22 64.85%
WHash 15 155137 1457.84 91.22%
WHash 20 169657 1709.21 99.76%

AHash 10 105272 886.80 61.90%
AHash 15 159273 1483.17 93.65%
AHash 20 169606 1703.14 99.73%

EVIREC 10 150015 1421.59 88.21%
EVIREC 15 169912 1721.71 99.91%
EVIREC 20 169963 1724.4 99.94%

TABLE VII
DE-DUPLICATION RESULTS ON THE CIFAR10 DATA SET WITH 50000

IMAGES AND TOTAL SIZE OF 47.4 MB.

Method Ths Dup δs ξ

CEDedup 0.85 8638 7.59 17.27%
CEDedup 0.90 1864 1.64 3.73%
CEDedup 0.95 297 0.26 0.59%

EVIREC 0.85 49988 47.39 99.99%
EVIREC 0.90 49944 46.35 99.90%
EVIREC 0.95 47957 42.35 96.11%

When considering other distance thresholds, EVIREC out-
performs the hashing-based methods in Table III. The same
trend is observed for the CIFAR100 data set, as shown in Table
IV, where EVIREC successfully detects 49,744 duplicate
images, resulting in a redundancy elimination rate of 99.69%.
This leads to a reduction in the database size by 114.07
megabytes out of the original 114.2 megabytes. Additionally,
Table V illustrates the effectiveness of EVIREC on the Birds
data set, detecting 69,982 duplicate images and achieving
a redundancy elimination rate of 99.81%. This results in a
database size reduction of 1554.7 megabytes out of the original
1600 megabytes.

The experimental results for the comparing methods on
the combined data set are presented in Table VI. Despite the
diverse range of object sizes, shapes, and camera angles within
the combined data set, EVIREC demonstrates its exceptional
performance by successfully detecting 169,963 redundant im-
ages, resulting in an impressive redundancy elimination rate
of 99.94% for threshold distance 20. In Table VI, EVIREC
outperforms all other comparing methods for all the corre-
sponding threshold distances. Additionally, EVIREC achieves
a significant reduction in database size, reducing it by 1724.4
megabytes compared to the original size of 1761.6 megabytes.



B. Comparison with CNN-based methods

We have compared our EVIREC method and the state-
of-the-art CNN-based method CE-Dedup [24]. Our method’s
performance was evaluated based on the cosine similarity
threshold. The experimental results for CIFAR10, CIFAR100,
and the Birds data set are presented in Table VII, Table VIII,
and Table IX respectively, considering three different similarity
thresholds (Ths = [0.85, 0.90, 0.95]).

TABLE VIII
DEDUPLICATION RESULTS ON THE CIFAR100 DATA SET WITH 50000

IMAGES AND TOTAL SIZE OF 114.2 MB.

Method Ths Dup δs ξ

CEDedup 0.85 9389 19.39 18.81%
CEDedup 0.90 3224 6.56 6.46%
CEDedup 0.95 941 1.97 1.88%

EVIREC 0.85 49887 114.02 99.97%
EVIREC 0.90 49835 113.85 99.87%
EVIREC 0.95 47519 105.45 95.23%

TABLE IX
DEDUPLICATION RESULTS ON THE BIRDS DATA SET WITH 70626 IMAGES

AND TOTAL SIZE OF 1600 MB.

Method Ths Dup δs ξ

CEDedup 0.85 46291 984.00 65.96%
CEDedup 0.90 18447 389.72 26.28%
CEDedup 0.95 4769 103.75 6.79%

EVIREC 0.85 68587 1554.3 97.73%
EVIREC 0.90 67968 1539.9 96.85%
EVIREC 0.95 67849 1537.5 96.68%

TABLE X
DEDUPLICATION RESULTS ON THE COMBINED DATA SET WITH 170626

IMAGES AND TOTAL SIZE OF 1761.6 MB.

Method Ths Dup δs ξ

CEDedup 0.85 105272 886.80 61.90%
CEDedup 0.90 33244 692.34 47.37%
CEDedup 0.95 3683 77.26 5.24%

EVIREC 0.85 167566 1589.35 98.53%
EVIREC 0.90 163484 1521.84 96.13%
EVIREC 0.95 159274 1483.19 93.65%

Across all four data sets and corresponding similarity
thresholds, EVIREC consistently outperforms CE-Dedup. For
the CIFAR10 data set, EVIREC successfully detects 49,988
duplicate images out of a total of 49,990 images, resulting in
a redundancy elimination rate of 99.99% and reducing the
database size by 47.39 megabytes out of the original 47.4
megabytes for Ths = 0.85 (Table VII). In contrast, CE-Dedup
only identifies 8,638 duplicate images out of 49,990, achieving
a redundancy elimination rate of 17.27% and reducing the
database size by 7.59 megabytes for the same similarity
threshold (Table VII). Similar trends can be observed in Table
VIII for the CIFAR100 data set and Table IX for the Birds
data set. CE-Dedup eliminates 65.96% of redundant images

in the Birds data set, while EVIREC achieves a significantly
higher redundancy elimination rate of 97.73% (Table IX).

The experimental results for comparing methods are pre-
sented in Table X, showcasing the performance on the com-
bined data set. Despite the diverse range of object sizes,
shapes, and camera angles within the combined data set,
EVIREC demonstrates its effectiveness by successfully de-
tecting 167,566 redundant images, resulting in a remarkable
redundancy elimination rate of 98.53%. In comparison to CE-
Dedup, as depicted in Table X, EVIREC surpasses it across
all corresponding similarity thresholds. Furthermore, EVIREC
achieves a substantial reduction in database size, reducing it
by 1589.35 megabytes compared to the original size of 1761.6
megabytes.

Based on the experimental results, it is evident that EVIREC
consistently outperforms CE-Dedup across all four data sets
(Table VII, VIII, IX, X). Therefore, EVIREC has proven to
be the most robust method for the image deduplication task
compared to state-of-the-art hashing-based and CNN-based
methods.

C. Ablation Study

In this section, we first perform an ablation study on each
data set and evaluation metrics to demonstrate the effectiveness
of our proposed model. Next, we perform an ablation study on
each important hyper-parameters, such as distance threshold
and similarity threshold; the summary of the ablation study is
illustrated in Table XI.

The main goal of the deduplication method is to reduce
the redundant data in the database while increasing the True
Positive (TP) rate throughout the process. The rate of TP
is directly connected to the threshold we design for the
deduplication purpose. For example, Suppose we choose to use
cosine similarity as the evaluation metric. In that case, a lower
threshold will discard the query image if it slightly matches
any image stored in the database. Thus It will increase the
TP and restrict more images to be stored in the database. On
the contrary, a higher threshold will allow more query images
to pass through the process and consequently increase False
Negative in the database. As shown in Table XI, increasing the
threshold increase duplicates for Bird Class: Brown Creeper
from 7 to 16. Figure 6 shows the query Vs. Duplicate images
that are stored in the database based on different similarity
thresholds. Suppose we compare the different rows in 6. In
that case, duplicates are more similar to the query image when
using a higher similarity threshold in deduplication.

Using distance metrics for the deduplication process works
the opposite of similarity metrics. Here, a higher distance
threshold filters more duplicates as they are distant in the
feature space. So, a higher threshold gives a higher True
Positive and reduces the redundancy in the database. Table
XI presents the number of duplicates stored against different
distance thresholds for Bird Class: Brown Creeper. We see
that the number of duplicates increases from 8 to 45 due to
easing the distance threshold from 20 to 15. The above study
shows that our normalized cosine similarity metrics achieve a



TABLE XI
ABLATION STUDY FOR THE NUMBER OF DUPLICATES STORED FOR BIRD

CLASS: BROWN CREEPER BASED ON DIFFERENT METRICS AND
THRESHOLDS.

Metrics Threshold Num. of Duplicates
0.85 7

Cosine 0.90 12
Similarity 0.95 16

10 45
Euclidean 15 33
Distance 20 8

Fig. 6. Ablation Study: Illustration of False Negatives with Cosine Similarity
as evaluation metrics.

Fig. 7. Ablation Study: Illustration of False Negatives with Euclidean
Distance as evaluation metrics.

higher true positive rate than the Euclidean distance metrics.
Moreover, duplicates in Figure 7 are more similar to their
query image compared to Figure 6 due to the higher number
of duplicates allowed by the Euclidean distance metrics.

VI. CONCLUSION

Visual crowd-sensing (VCS) asks users to contribute to
different tasks by sending images or video information from
their surroundings. Due to the abundance of participant data,
it is hard to identify and eliminate redundant images. Visual

crowd-sensing provides a more informative and diverse image
database. Our proposed Efficient Visual Indexing and Retrieval
for Edge Crowd-sensing (EVIREC) method extracts features
from an image database using Deep Neural Network (DNN).
It performs Approximate Nearest Neighbor (ANN) search to
retrieve similar images. EVIREC then efficiently eliminates the
redundant data based on the distant threshold in the feature
space. The experimental result shows that EVIREC outper-
forms state-of-the-art hashing-based and CNN-based methods
for the CIFAR10, CIFAR100, and Birds data set by eliminating
redundant images up to 99.99%.
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[31] Rahman, M.M.M., Tešić, J.: Evaluating hybrid approximate
nearest neighbor indexing and search (hannis) for high-
dimensional image feature search. In: 2022 IEEE International
Conference on Big Data (Big Data). pp. 6802–6804 (2022).
https://doi.org/10.1109/BigData55660.2022.10021048

[32] Saini, M.K., Gadde, R., Yan, S., Ooi, W.T.: Movimash: online mobile
video mashup. In: Proceedings of the 20th ACM international conference
on Multimedia. pp. 139–148 (2012)

[33] Shensa, M.J., et al.: The discrete wavelet transform: wedding the a trous
and mallat algorithms. IEEE Transactions on signal processing 40(10),
2464–2482 (1992)

[34] Singh, S.P., Bhatnagar, G.: A robust image hashing based on discrete
wavelet transform. In: 2017 IEEE International Conference on Signal
and Image Processing Applications (ICSIPA). pp. 440–444. IEEE (2017)

[35] Thaiyalnayaki, S., Sasikala, J., Ponraj, R.: Detecting near-duplicate
images using segmented minhash algorithm. International Journal of
Advanced Intelligence Paradigms 12(1-2), 192–206 (2019)

[36] Tuite, K., Snavely, N., Hsiao, D.y., Tabing, N., Popovic, Z.: Photocity:
training experts at large-scale image acquisition through a competitive
game. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. pp. 1383–1392 (2011)

[37] Uddin, M.Y.S., Wang, H., Saremi, F., Qi, G.J., Abdelzaher, T., Huang,
T.: Photonet: a similarity-aware picture delivery service for situation
awareness. In: 2011 IEEE 32nd Real-Time Systems Symposium. pp.
317–326. IEEE (2011)

[38] Wang, J., Fu, X., Xiao, F., Tian, C.: Dhash: Enabling dynamic and
efficient hash tables. arXiv preprint arXiv:2006.00819 (2020)

[39] White, J., Thompson, C., Turner, H., Dougherty, B., Schmidt, D.C.:
Wreckwatch: Automatic traffic accident detection and notification with
smartphones. Mobile Networks and Applications 16(3), 285–303 (2011)

[40] Wu, Y., Mei, T., Xu, Y.Q., Yu, N., Li, S.: Movieup: Automatic mobile
video mashup. IEEE Transactions on Circuits and Systems for Video
Technology 25(12), 1941–1954 (2015)

[41] Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning
via non-parametric instance discrimination. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 3733–3742
(2018)

[42] Zauner, C.: Implementation and benchmarking of perceptual image hash
functions (2010)


