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Abstract—For decades, the x86 architecture supported by
Intel and AMD has been the dominate target for software
development. Recently, ARM has solidified itself as a highly
competitive and promising CPU architecture by exhibiting both
high performance and low power consumption simultaneously.
In the foreseeable future, a copious amount of software will be
fully migrated to the ARM architecture or support both x86 and
ARM simultaneously. Nevertheless, software ports from x86 to
ARM are not trivial for a number of reasons. First, it is time
consuming to write code that resolves all compatibility issues
for a new architecture. Second, specific hardware (e.g. ARM
chips) and supporting toolkits (e.g. libraries and compilers) may
not be readily available for developers, which will delay the
porting process. Third, it is hard to predict the performance
of software before testing it on production chips. In this paper,
we strive to tackle these challenges by proposing an instruction
prediction method that can automatically generate AARCH64
code from existing x86-64 executables. Although the generated
code might not be directly executable, it provides a cheap and
efficient solution for developers to estimate certain runtime
metrics before actually building, deploying and testing code
on an ARM-based CPU. Our experimental results show that
AARCH64 instructions derived using prediction can achieve
a high Bilingual Evaluation Understudy (BLEU) Score. This
indicates a quality match between generated executables and
natively ported AARCH64 software.

Index Terms—x86 Architecture, ARM Architecture, Software
Portability, Instruction Prediction, Language Translation

I. INTRODUCTION

Over the past few decades, x86 has undoubtedly become
the dominate architecture for software running on modern
CPUs, thanks to the long term support from both Intel and
AMD. This trend is shifting quickly with ARM emerging as
a highly competitive CPU architecture. Recently, Apple has
made a significant investment in ARM by designing its own
ARM-based System-on-a-Chip (SoC) hardware. Announced in
late 2020, the M1 Chip will be used to power all its primary
products (e.g. MacBook, iMac, and iPad) [1]. Less than a year
later, Microsoft also announced its plan to further endorse the
ARM architecture in Windows 10 and develop comparable
hardware [2]. Considering the enormous size of Apple and
Microsoft’s software ecosystem, it is inevitable that significant
amounts of software will be fully ported to ARM or support
both x86 and ARM simultaneously.

However, migrating software from x86 to ARM is not
a trivial task. Currently, there are two primary strategies
available to developers. The first strategy requires developers
to natively port and create some new, dedicated code to support
the ARM architecture. The learning curve to fix all compat-
ibility issues could be high and extremely time consuming
for inexperienced programmers. Alternatively, developers can
leverage binary translation and run their code under emulation
(e.g. Apple Rosetta [3]). Although this approach introduces
minimal development cost, it also overwhelmingly favors
compatibility over performance. Software performance could
degrade by 20% or more due to the overhead incurred through
emulation [4]. Completely relying on emulation or binary
translation is also risky because there is no guarantee as to
how long the underlying tech will be available. For example,
Apple has previously set a precedent for discontinuing these
surrogate forms of execution in subsequent OS releases [5].
For either strategy, the porting process could be further delayed
if the hardware (e.g. ARM chips) or supporting toolkits (e.g.
libraries and compilers) are not provided in a timely fashion.
To the point, obtainable test hardware was not available until
six months after Apple announced the M1 chip. Without
access to this hardware, it is almost impossible for developers
to predict the performance of their code on the AARCH64
architecture.

To address weaknesses of current methods for porting soft-
ware from x86-64 to the AARCH64 architecture, we propose
an instruction prediction method, which can automatically
generate an ARM version of existing x86-based software.
Although this code may not be directly executable, it does
not require software developers to obtain physical hardware
or have in-depth knowledge of cross-platform development.
Therefore, it provides a cheap and efficient solution for de-
velopers to estimate certain runtime metrics of their software
before building, deploying and testing on an ARM-based CPU.

Figure 1 summarizes the key steps of our methodology.
First, a code corpus will be created and shared with all
developers. This is essentially a large database that consists
of 1000+ source functions/routines built for the x86-64 and
AARCH64 architectures respectively. It is used to learn suf-
ficient historical patterns of code and to map relationships
between each architecture’s instructions. Next, an n-gram
model is utilized to create an accurate native translation
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Fig. 1. Overview of the instruction prediction approach.

of the program from x86-64 to AARCH64 according to a
learned n-gram instruction distribution list. Last but not the
least, we develop the PortAuthority tool that uses dynamic
programming analysis to predict the performance of derived
code on ARM chips. We comprehensively evaluate our method
using the Bilingual Evaluation Understudy (BLEU) Score [6].
The experimental results show that derived code using our
method can achieve a high BLEU score, which provides strong
evidence that our method can generate AARCH64 instructions
from x86-based software with quality near a native port.

II. RELATED WORK

It is unrealistic to judge software performance without a due
diligence porting trial and some upfront, hand-coded work.
Predicting the runtime behavior of software conventionally
requires executing some sample code on a device of interest.
When estimating cross-platform software performance, a de-
veloper needs to be confident the source can be cross-compiled
and that the resulting code will run deterministically. This
section reviews the strengths of portable code and introduces
some related work on executable prediction.

A. Portability

Software exhibits portability when its adaption costs are less
than those of redevelopment [7]. Rather than by design, there
is the common but poor practice of applying ad hoc methods
when the eventual need for a port is discovered. Economically,
this works against sound investment principles in a product
line destined to remain in the market for a prolonged period.

Several obstacles prevent software from being easily ported
to a new device with different architecture. For example,

if a code base relies on language features not available in
the compiler for a required target, significant rework could
be required to enable related functionality. Newer standards
are a frequent source of non-compliance in a language or
standard library, but other historical sources may also exist
[8]. Software issues can also exist beyond the build process
and continue into the runtime environment. System RAM on
some targets may be non-expandable and designed to support
a finite number of simultaneous applications. In contrast,
desktop computer components tend to be expandable because
the expected experience on that device includes the possibility
of an arbitrarily large, multitasking workflow. Because most
compilers are not designed to consider variable device specifi-
cation, when software is ported a developer might be surprised
by incompatibility.

B. Cross-platform Prediction

Broadly methods for cross-platform prediction are not new
[9] [10] [11]. Methods we reviewed for this paper favor
examining code from the bottom up or at near the binary level.
This allows for insights to be gained from code without the
benefit of source. It excludes the possibility of reporting false
information to a user that may not be knowable early, apparent
only after later compilation or linking stages of the build
pipeline. In emerging platforms, mature tooling and ample
code may not be readily available to address prediction with
supervised learning [12]. Conversely, there are techniques with
roots in traditional language processing that do not require
big data. Asm2vec is an example of a cross-platform utility
designed to find a user’s code within random executables [10].
Based off the widely popular Word2Vec algorithm, this tool
uses a neural network approach to process an entire application
searching for sections of code with bilingual equivalency to
a given input. Contiguous sequences of n items, or n-grams,
have been used successfully in this family of pattern matching
techniques with binaries compiled using similar levels of
optimization [11].

While we acknowledge other methods for cross-platform
prediction, many are not directly comparable to our method
because they are based on vectorization not generation. More-
over, most searching methods require complete binary data
from both the source platform and the target platform, which
is hard (if possible) to obtain. The closest work to our proposed
method was published by Tumeo [9], which was capable of
providing software metrics early in the development process
without access to specific hardware.

C. BLEU Score

The Bilingual Evaluation Understudy (BLEU for short)
score [6] is a widely accepted metric for evaluating the quality
of a generated sentence to a reference sentence. It is always
in the range of 0 to 1, with 1 being a perfect match (generally
unobtainable) and 0 being a perfect mismatch. Although the
BLEU score is mostly used for natural language translation,
we use it to evaluate the quality of code translation from an
x86-64 source to an AARCH64 target.The generated code for
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the target platform is known as the candidate. When comparing
a candidate to its reference (a native AARCH64 port), we
window over the candidate combining terms at a distance of
n. We look for instances of that n-gram in the reference code
where results are based on statistical precision.

III. METHODOLOGY

To reduce the burden of developers for migrating software
from x86 to ARM, we propose a novel technique that can
automatically generate ARM-based code from x86-based code
and estimate certain runtime metrics of derived ARM code
without building, deploying and testing them on an AARCH64
chip. In this section, we provide a detailed explanation about
the key components of our method, which includes an n-gram
instruction prediction model, statistical binary occurrence data,
the PortAuthority tool, and the Flat VM.

A. N-gram Instruction Prediction Model

The primary responsibility of the n-gram instruction pre-
diction model is to predict what instructions will be the
most probable compiled for AARCH64 based on the original
instructions used on the x86-64 source platform. To increase
the accuracy of calculating such probability, it is necessary
to have a large enough code corpus (i.e. a large database
that consists of many identical functions built for each target
architecture) to reveal sufficient historical patterns of code
mapping relations between x86-64 and AARCH64.

In our method, we create the code corpus by following the
high data standard presented in [13]. More specifically, we
assembled a set of C/C++ routines compiled using a specific
compiler version common to both x86-64 and AARCH64. It
is critical that these executable segments are created using the
same process per platform and using identical source code
across platforms. In addition to available open source code,
we also incorporate a selection of Clang compiler tests and
computer generated C code using Csmith [14]. Each function
in our code corpus is compiled using the Clang compiler from
the LLVM project at commit hash bb7a57.

When the code corpus is completed for both x86-64 and
AARCH64, a dictionary for cross-platform translation be-
comes available. The BLEU score used to evaluate our model
is normally applied to written text. The score is typically
calculated from each “sentence” and averaged over the entire
corpus of input. We have scored our translations likewise
where each function translated is treated as a “sentence”. All
“sentence” scores are then averaged and presented as our final
results.

However, it is worth noting that limiting software diversity
in the code corpus or mixing compilation processes will
decrease the accuracy of our prediction model. Using the
compiler(s) intended to build a cross-platform project is also
pivotal. The method will work using two different compilers
provided that one compilation process is exclusively used to
create the corresponding piece of the database on each of the
platforms.

Drawing from the code corpus, we can window across
n instructions at a time recording the x86-64’s n-gram and
the corresponding ARM architecture positions. We build a
special tool to process the entire dataset and convert the final
findings into a map (see Table 1 as an example). This output is
composed of a list of AARCH64 n-gram frequencies attached
to each discovered x86-64 n-gram from the code corpus. Using
these distribution lists, we emit the respective cross-platform
version according to the given probability.

TABLE I
SOME AARCH64 2-GRAM DISTRIBUTIONS FOR X86-64 PUSH-MOV

Bigram Frequency %
SUB-STP 45
SUB-STR 16
STP-STR 6
MOV-STP 5
STP-MOV 5

B. Statistical Occurrence Data

One important issue that must be addressed when translat-
ing executable code is the potential difference in instruction
density between the source platform and the target platform.
For instance, the number of AARCH64 instructions in a
given program is typically larger than that of it’s x86-64
counterpart. In our code corpus, we have observed that on
average AARCH64 variants of each program contain around
5% more individual instructions than those built for x86-
64. Therefore, generating an executable with a 1:1 ratio of
instructions often ignores a certain percentage of instructions
in the original program. To solve this problem, we supplement
our raw n-gram sequences with statistical occurrence data.
Each generated executable is padded after the initial n-gram
conversion with an additional short list of raw probabilistic
instructions equal to the deficit expected between AARCH64
and x86-64.

C. PortAuthority

To derive metrics information from an executable’s in-
structions without direct measurement, we include a dynamic
program analysis tool called PortAuthority [15]. First a user
needs to build detailed execution information for their ap-
plication through one of a few frontends. The purpose of a
frontend is to single step and record each instruction a user’s
program executes for a given range. After a profile is recorded,
users can then load their data into the hosted PortAuthority
application to visualize insights related to their code.

D. Flat VM

While PortAuthority can directly process runnable ELF
format executables built by any compiler, it lacks the ability
to predict program behavior based on a less than complete
representation of a program. To mitigate this problem, we
introduce Flat VM that allows us to work around PortAuthor-
ity’s runnable input process limitation. Specifically, we inject
raw binary data into incomplete ELF files using the objcopy
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Fig. 2. Generated instruction instances using different methods versus instruction instances from the full port of the Fibonacci(24) test.

utility with the update-section option. This tactic allows us
to override the text section from a basic C program with
our generated instruction data. While not executable on its
own due to limitations patching faults caused by ABI non-
compliance, branch endpoint changes and stack corruption the
resulting ELF can be read and processed by off-the-shelf tools,
like the GNU Binutils. To tap into the profiling capability
provided by PortAuthority without the benefit of single step
execution, we create a simple virtual machine to process our
ELF executable into the intermediate format created by the
other profiler frontends.

The JSON input format is divided into two distinct parts,
the fixed header and variable content. The header is small,
containing only a few values related to platform identification
and size. The bulk of the input data is composed of the content,
per instruction objects with three member variables; a, o, and
m. In our Flat VM program, for the length of the text section,
we output this structure and then increment a program counter
by the size of the last instruction processed.

IV. EXPERIMENTAL RESULTS

In this section, we conduct a series of experiments to
comprehensively evaluate the effectiveness of our n-gram
generated executables using a variety of standards and over
multiple values of n. A key point to understanding our results
is awareness that we have no direct control over how the
ported application is formed in this process. The blue lines
shown in Figure 2 and Figure 3 represent an externally

compiled reference binary that would not be present in any
final instruction prediction based tools. First we look at the
differences between the number and categories of generated
instructions versus actual instruction mix in a full application
port. Next we consider the predicted instructions matching
the exact placement within a fully ported executable. Finally
we calculate the BLEU score of these binaries to determine
whether or not they would be considered good translations.
Four test applications are run through the same series of tests
and a summary of the results are shown in Table 2.

A. Context Free Tests

Our first test program is a short Fibonacci sequence cal-
culator. With all our examples, we try to sample an area of
2-4 million instructions in order to keep consistency across
our results. While the execution of each is highly detailed,
the expected runtime of any examples is only a few seconds.
Outcomes from analyzing this program are shown in Figure
2, which illustrates the worse case differences in instruction
instances between our generated ELF files and a completed
AARCH64 port of the Fibonacci calculator. The absolute value
of instructions in the completed port versus the instances
provided by our model are charted. Gaps are shown in de-
creasing order left to right and limited to the worst 20 unique
instructions within the program. The executables in our test
catalog are composed from 30 to 60 unique instructions per
application.
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Fig. 3. Generated 2-gram instruction instances versus instruction instances
from the full port of logcat.

In the first experiment, the generated executable is com-
posed only from the likely statistical distribution of instruc-
tions available from our instruction database. We consider
inputs like program size and relative architecture instruction
density but no code from an original non-architecture program
is referenced. The results are shown in Figure 2a. This result
acts as a control on which we built further evaluations. Note
how even without a compiled executable for reference, the
overall structure of the program is loosely in line with a
true port. This emphasizes that repetitive elements involved in
developing a program may overshadow custom computation
internally, especially when considering all of these programs
conform to the same requirements for calling functions, appli-
cation binary interfaces and other forms of compliance code.

Moving on to the next variant, Figure 2b provides com-
parative results for the 2-gram version of the same generated
application. Unlike the first generation scheme, based purely
on statistical distribution, all latter schemes use an x86-64
version of the core application as a source for emitting equiv-
alent n-grams. The scale of differences between the candidate
and the reference instruction instances drops sharply where n-
grams are used. Immediately, the outline of the 2-gram form
snaps tighter to the instruction mix exhibited by the full port.
Unfortunately, this momentum is not clearly maintained as we
increase values for n, as evidenced by the diminishing return
of the 4-gram prediction. The trend of worst case instruction
improvements accompanied by loss of cohesion on instances
originally further to the right on our chart holds true as n
increases. This amplified noise is visible in Figure 2c and
Figure 2d.

The experiments are conducted on the remaining 3 test pro-
grams with similar results. Our second test program is based
on code from the logcat application included with the Android
operating system. Logcat provides a mechanism for filtering
and prioritizing messages familiar to users of system logs. We
pull from commit hash cfaded and make changes to this code
in order to pump messages directly so that the program could
be tested without the need for a second application for input.
Next we include a routine from the TensorFlow framework,

an open source platform for machine learning. Our test uses
code for single-threaded matrix multiplication from version
1.4.1 with some infrastructure to support execution outside
of the full framework. Finally we test using a game project
designed for the Arduboy handheld game console. Originally
Sirene was written for an 8-bit embedded CPU architecture
but here is compiled on x86-64.

Closely matching raw instruction mix is valuable when pro-
filing code through context unaware tools like PortAuthority.
Other binary analysis tools may benefit from accurate context,
but this tool provides estimates based on per instruction
signatures. For analysis without context, we would suggest
equally 2 or 3-gram interpretations as input from our tools.
Some of our test applications perform slightly better with
the 3-gram interpretation but the results are close. While
exact matches for instructions are preferred, PortAuthority has
proven that categories of instructions have similar signatures,
therefore some misalignment is easily tolerated. In practice,
having a number close to the overall instructions and with
proper categorization will yield usable results. Related 2-gram
information for the best test program is shown in Figure 3,
which follows the same design and structure as discussed in
Figure 2.

TABLE II
RESULTS USING 2-GRAM GENERATION FROM OUR TEST CATALOG

Test Exact Match % BLEU
Fibonacci (24) 8 0.22

logcat 10 0.79
TensorFlow (MatMul) 10 0.33

Sirene 6 0.42

B. Context Aware Tests

While PortAuthority does not currently require context to
work as designed, other forms of binary analysis do. Context is
important as it may be required to determine software metrics.
Cache utilization is an example of context aware analysis
possible through instruction profiling [16]. We conduct exper-
iments to study the impact of n-gram generation on context
preservation (ref. Table 2 for details on exact matches and each
generated program’s BLEU score). Specifically, we recycle the
same test programs for use in our context quality tests. Here
we focus on the preservation of execution context and evaluate
in both a strict and a lenient mode. In strict context evaluation,
we analyze the accuracy of generated instructions in relation to
addresses assigned within the reference port. We only consider
exact matches for this value. Lenient evaluation is based on
the BLEU score, which indicates computational readability.
Acceptable BLEU scores relate to fluency thus in this domain
should also relate to the preservation of execution context.
Expectations for readability can be viewed as appreciably
better for each 10% improvement in the score. Scores that
are less than 0.20 usually do not provide significant value
while scores above 0.60 offer the highest fluency [17]. The
score penalizes words that appear in the candidate more times
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than its references. Hence there is a high level of correlation
between the closest modeling executable tested (see Figure 3),
and its BLEU score (ref. Table 2).

Fig. 4. Mixed disassembly for Sirene.

C. Discussion

One limitation to improving our BLEU scores is the lack of
several reference translations to compare against as compilers
should always build source in the exact same way. In contrast,
a human translator would not be held to the same standard.

We recommend 2-gram instruction prediction when profil-
ing ELF executables as it generates the best result and fits for
broad categories of analysis. Exact matches are never greater
than 10% in any of our tests. A minimum BLEU score of 0.20
is maintained over all experiments, which suggests the gist of
a given program is clear, albeit with significant ordering errors.
This compliments the results presented during our context
free testing. Most of our translated executables provide good,
understandable translations and one test even achieves the high
quality standard.

Apineni et al. reported that natural language translations
can achieve their highest levels of n-gram correlation around
n values of 4 [18]. Functional blocks may contribute to our
comparatively low best value for n of 2. Consider the mixed
disassembly sample in Figure 4. The objdump utility allows
user to create this output laying out certain compiler decisions
used to create the program. Notice that in each of these 3 lines
of code only 1 or 2 instructions are required to convey the
source intent. If the majority of source functionality is built
using only a couple of instructions, it makes sense that larger
n-grams would fail to produce consistent results. Ultimately,
trusted values are more important than high numbers for n.
Where possible, clarity may be improved by translating from
the platform with the lowest instruction density.

ELF files can be generated for a variety of platforms. Here
we work with what we feel to be the two most contem-
porary choices for cross-platform development, x86-64 and
AARCH64. However, there is no known limitation to working
with upcoming platforms like RISC-V. Conducted properly, we
expect the method to function well with all ELF generating
targets.

V. CONCLUSION AND FUTURE WORK

As ARM is quickly emerging as a highly promising ar-
chitecure to compete with x86, it can be expected that a
copious amount of software will be migrated to the ARM
architecture in the near future. To facilitate the process of

migrating software from x86-64 to AARCH64, we propose
an n-gram based instruction prediction approach to estimate
runtime metrics without building, deploying and testing code
on ARM chips. Our experimental results show that the 2-gram
instruction prediction can provide quality portable code with
desirable BLEU scores, a measure of readability. We have
shown the potential for use with context-free analysis as well
as some exciting applications in the context-aware space.
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