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Abstract—Recent increases in aerial image access and vol-
ume, increases in computational power, and interest in appli-
cations have opened the door to scaling up object detection to
production. Aerial data sets are very large in size, and each
frame of the data set contains a huge number of dense and
small objects. Deep learning applications for aerial imagery
are behind due to a high variety between datasets (e.g. object
sizes, class distributions, object feature uniformity, image
acquisition, distance, weather conditions), the size of objects in
satellite imagery, and the subsequent failure of state-of-the-art
architecture to capture small objects, local features, and region
proposals for densely overlapped objects in satellite images. In
this paper, we provide a novel pipeline that improves the back-
end through spatial pyramid pooling, a partial cross-stage
network, a region proposal network via heatmap-based region
proposals, and object localization and identification through a
novel image difficulty score that adapts the overall focal loss
measure based on the image difficulty. Our proposed model
outperformed the state-of-the-art method in mAP by 1.8%
and 2.3% in the DOTA and DIOR data sets, respectively.

I. INTRODUCTION
The next frontier in precision agriculture, emergency

rescue system, terrestrial and naval traffic monitoring, and
industrial surveillance is the integration of automated, re-
liable object location from overhead satellite and aerial
imagery [1], [2]. Continuous improvements in deep neural
network (DNN) models, combined with increased access
to computational resources, have enabled the improvement
of object detection methods in both aerial [3]–[5] and
consumer images [6]–[9]. For DNNs to make a reliable
localization in satellite imagery, the networks require large
and diverse amounts of training data. There are only a
handful of reliably annotated datasets for overhead imagery,
e.g: DOTA2.0 [4], DIOR [5], Visdrone [10], and very few
reliable object detection methods in the satellite imagery
approach [4], [11], [12]. The shortcoming of these works
on satellite images are as follows: considering complex
datasets with very small and dense objects, considering
complex background, large number of objects per image,
per image class variation, handling hard examples, and
performing better local feature extraction for small objects.

Typical object detection approaches developed for con-
sumer images fail on the satellite imagery due to the relative
object size to image size and the number of objects in the
image. The underpinning assumption in the state-of-the-art
(SOTA) architecture design for object detection is that the

Fig. 1. Consumer and aerial image examples

number of objects in an image is in the single digits and the
object size is greater than 1% of the image size. Figure 1
illustrates typical examples for consumer and for satellite
images.

Satellite images are taken from high altitudes. The num-
ber of objects per image is usually in the triple digits, and
the size of the object is often less than 0.01% of the size
of an image. The size of the satellite image is up to 400
million pixels, and the sizes of objects are often less than
100 pixels. A typical satellite image patch is 1024× 1024
or 1.05 million pixels. If an object is 10 × 10 or 100
pixels, the size of the object is < 0.0001 of the area of the
image. Small objects in satellite images tend to be densely
packed, and the success of object detection depends on
how reliable the pixel- and object- feature extraction and
region proposal network in the DNN architecture is. The
increased number of very small densely packed objects in
the image increases the chance of losing pixel-level feature
information during the feature extraction phase. The RPN-
based proposal network misses a large number of small
objects in the early stage of the processing pipeline and
cannot be recovered in the detection stage [14]. Comparison
between RPN, One-Stage and Heatmap based object detec-
tors and the heatmap based network [15] often outperforms
the RPN-based network [9], [16] in small object detection
[14].

In this paper, we have developed an object detection
network tuned to satellite imagery. Section II summa-
rizes related work. Section III introduces the proposed
methodology and improvements to the object detection
training pipeline where we design a strong darknet-style
[17] backbone based on spatial pyramid pooling (SPP) and
the partial cross-stage network (CSP) [18], followed by a
heatmap-based region proposal generator (RPG) to address
the challenge of small dense objects in satellite imagery.
The heatmap-based proposal box regression completely



Fig. 2. Base model: heatmap based multi-stage object detection model [13].

eliminates the costly nonmaximal suppression step [13] in
the RPN post-processing. In Section IV we present the
experimental results on satellite image sets and show that
the proposed approach outperforms the available state-of-
the-art (SOTA) models in terms of detecting overlapped and
small objects, and producing higher mAP across all classes.
We present future work in Section V.

II. RELATED WORK

State-of-the-art (SOTA) object detectors are single-stage
or multistage detectors. Single-stage detectors are object
detection networks without an RPN module [8], [17]. They
are mainly based on different scale and aspect ratios of
the anchor boxes. Single-stage object detection architectures
were shown to miss a significant amount of small objects
in satellite imagery, and they also require a good anchor
design for better performance [4], [19]. Although single-
stage detectors were able to achieve state-of-the-art results
for consumer images, the region proposals from single-stage
detectors are over-dominated by the negative examples,
which makes the detection layers biased toward a False
Positive result during the training. Multistage detectors are
often more reliable [20], [21] because of extra effort to
improve the image regions of interest. Multistage detectors
[9], [16] use RPN to filter out positive instances from the
image with the help of IOU and the non-maximum sup-
pression technique (NMS). With multistage detectors, we
have to train an additional network for region generations,
though there have been several works for a lighter version
of object detection which does not require the RPN network
[6], [8], [17].

Heatmap-based RPN uses a Gaussian filter which creates
a heatmap peak at the center of the object to define proposal
regions. The center is used here as an anchor to the object
and is based solely on location, not box overlap [15].
Therefore, we have only one anchor per object, which
eliminates the heavy usage of NMS to filter overlapped
proposals, without affecting the quality of the proposal. As
the size of the object decreases, the chances of losing local
information in deep layers increase significantly. The first
step introduced toward small detection was the use of FPN
[22]. Instead of relying on a single scale feature, it was
proposed to use different scale features from different stages
of the backbone for different scale predictions. However,
the performance of the FPN network still depends on a

strong backbone network. The backbone network produces
bottom-up features from the input image, and the FPN layer
upscales the bottom-up features with the combination of
lateral connections to create top-bottom features for scale
prediction. FPN also helps to strengthen low spatially rich
features by combining semantically rich features. Subse-
quently, several other variants [23], [24] of FPN method
were formed for improved performance. The pixel-level
appearance features do not contain enough information to
localize small objects in an image, and recent research
shows that the context-based bidirectional feature fusion
of neighboring pixels helps to localize small objects in an
image [25].

III. METHODOLOGY
A. Base Model

The base model used in this paper was recently intro-
duced in [13], and is illustrated in Figure 2. We have used
this model as our reference model and adjusted image load
size, number of output channels per CNN block and IOU in
FastRCNN Detection Head parameters for the satellite data
set. The base model has three different parts: Backbone,
Region Proposal Network (RPN), and Detection Head.

Backbone Backbone combines ResNet50 [13] as a fea-
ture extractor and the feature pyramid network (FPN)
for multi-scale prediction. The residual connection effi-
ciently combines features from previous layers with skip
connections [26]. The residual block architecture allows
for a deeper model without the vanishing-gradient effect.
ResNet50 [13] achieves state-of-the-art performance in the
COCO [27] and LVIS [21] data sets. The FPN layer extracts
three different scales of features from different layers of the
backbone network, and the strides applied on these three
scales are 8, 16, and 32, respectively, as illustrated in Fig-
ure 2. Also in Figure 2, the Resnet3, Resnet4 and Resnet5
blocks represent strides of 8, 16, and 32 respectively.

Region Proposal Network (RPN) RPN integrates the
heatmap-based region proposal network [15] into the Base
model object detection pipeline. ResNet Style RPN de-
grades performance in satellite imagery because there is
a large overlap between objects, and there is a significant
number of small objects per image [8]. Also, the number
of non-maximal suppression computations in every pair of
proposals per image is 1000+ times higher for satellite
imagery than for consumer imagery. The most efficient
way is to use probabilistic region proposals. Probabilistic



Fig. 3. SOD Model Architecture: Small Objectness & Diifficulty improvements to the DNN object detection pipeline: SOD architecture

region proposals are calculated using Gaussian kernels on
the different scales of features outputted by the backbone
element [15]. The element-wise comparison between the
max-pool input and the output of the Gaussian kernel
produces a heatmap. The max-pool operation will elevate
each pixel in the feature, except for the local maxima, where
the value is 1. Each peak in the heatmap corresponds to a
keypoint of the object (center). Then, the image features
at each keypoint are used to predict the height and width
of each object, and the resulting regressed bounding boxes
are shown to perform well when objects are close to each
other and overlap. As a computational bonus, the proposed
RPN enables the detection forward-pass, and we can skip
the non-maximal suppression step in our pipeline. We have
adjusted image augmentation size, number of proposals per
image, and heatmap minimum overlap per object in this
block to satellite images.

Detection Head Detection head is adapted from the
Faster-RCNN detector [9]. The detection head takes as input
the filtered region proposals from the RPN module. The
RPN provides different scale proposals at different steps,
as discussed in the backbone module. The first task in the
detection head is to convert each proposal into 7× 7 pixel
size grids with the same number of channels using the
region-of-interest (ROI) pooler. Then, the ROI pooler output
is flattened and fed into the fully connected network (FCN)
layers. The final stage outputs a (N,C) class predictor for
C classes and N region proposals, and (N, 4) bounding
boxes [9]. We have also adjusted the parameters number of
detection per image and IOU at detection block for satellite
imagery.

B. SOD Model
We propose the new SOD Model, short for Small Object-

ness and Difficulty (SOD) Modeling Improvements, illus-
trated in Figure 3. First, we add the CSP Darknet backbone,
then add the Difficulty Estimation block, and finally change
the cross-entropy loss with a modified version of focal loss,
as illustrated in Figure 3.

Backbone The efficiency of the RPN module depends on
the effectiveness of the Backbone module. If the backbone

fails to extract meaningful features for the small object
in the image, the RPN module will likely fail to include
the small object in the region proposals. In Base Model,
ResNet50 and ResNet101 feature extractors have not been
able to extract meaningful features from satellite images
that contain many small objects, as illustrated in Figure 4(b)
and Figure 7(b). The deeper layers of CNN architectures use
a larger number of steps. This approach increases semantic
information but loses spatial information in the feature
extraction module. On the other hand, the darknet backbone
uses the partial split network of stages to preserve better
semantic information in the deeper layers of CNN [17].
First, we propose to integrate the partial cross stage (CSP
darknet) [18] as a new backbone since it offers aggregation
layers at low and high resolution. In the next step, we
propose replacing the max-pooling layer with the spatial
pyramid-pooling layer for finer feature extraction. Proposed
SOD model for the detection of small objects in satellite
imagery is illustrated in Figure 3: the concatenation of
layers between layers 6 and 12, layer 4 and 16, layer 14
and 19 and layer 10 and 22 propagates the information from
the lower level to the higher level. The RPN module takes
features from Layers 17, 20, and 23 for proposal generation,
as illustrated in Figure 3. Since the objective is to detect
and identify small and dense objects in satellite imagery,
we introduce two new blocks into the pipeline: Custom
Focal Loss and Difficulty Estimator Block, as illustrated in
Figure 3.

Difficulty Estimator (DE) Here, the DE module derives
an image feature’s complexity from the network’s active
neuron information. The difficulty score (DS) for a FPN
feature level with a resolution of C×W ×H for the image
I is calculated in Eq. 1.

DS(I) =
1

C ∗ W ∗ H

C∑
c=1

W∑
w=1

H∑
h=1

fc,w,h(I) (1)

Here, C, W, H are feature output channels, feature width,
and feature height, respectively, at any FPN level; fc,w,h(I)
denotes the value from Sigmoid Linear Unit (SiLU) at every
pixels in the image I. Using this block, we calculate the
number of total neurons fired for a single image in the



Fig. 4. heatmap-based region proposal pipeline results for DIOR data

forward pass. We sum up all activation values and divide
them by the total dimension of the characteristic C, W, H
to obtain the difficulty score (DS) at the FPN level. We
derive this DS from 3 different FPN levels and average the
values to obtain the final DS for an image I. The increase
in complexity for this DS block is nearly negligible. The
Big Oh (O) notation for this block is O(r), where r is the
batch size in each iteration.

∀c ∈ C,α
′
c = −1 ∗ log

( |Cc|
|C1 ∪ C2 ∪ ...|

)
⇒ αc = β ∗

α′
c − min(αc)

max(αc) − min(αc)

(2)

a) Custom Focal Loss: The increased number of
trivial examples in the region proposals incurs a small
amount of loss for every example, which in turn contributes
significantly while using cross-entropy as a loss function.
Custom focal loss is calculated from the difficulty scores
for each image, and we propose replacing the loss of cross-
entropy with the loss of custom focalization, as illustrated
in Figure 3. This adjustment reduces the impact of the class
labeling imbalance and the trivial/difficult object identifica-
tion span for objects in the satellite imagery data set. In
the proposed focal loss function, we use difficulty scores
calculated for each image by a difficulty estimator block
as a weight factor to focus more on complex images with
a high diversity of objects and a high variation in pixel-
level features. The basic form of the focal loss function
is FL(pt, y) = αt ∗ (1 − pt)

γ ∗ CE(p, y), where pt is
the probability distribution of the target t, and y is the
ground truth of the object being a specific class, γ is
the modulating factor, αt is used as a weighting factor
and CE represents cross-entropy function. We propose a
new measure, Difficulty Weighted Focal Loss (DWFL) and
define it as a product of difficulty score and focal loss for
the image DWFL(x, p, y) = DS(I) ∗ FL(p, y), where
DS(I) is defined in Eq. 1. The value α is used in the
DWFL calculation to control the class imbalance problem
in our source and target data sets. Here, the value of the
parameter α increases if the frequency of a particular class
is very low and decreases if the frequency of a particular
class is very high. In this way, we focus more on minor
classes. The αc is calculated as in Eq. 2 for each class,
where the modulating factor α′

c depends on the frequency
|Cc| of a particular class in the data set and |C1∪C2∪C3...|

is the total number of all instances of all classes in the data
set.

We use these normalized αc values from Eq. 2 across
different classes c, c ∈ C to mitigate the imbalance of
class labeling. The scaling factor β = 0.6 was found to be
the most appropriate for satellite imagery. The range of α′

c

values in the DIOR data set is 0.2 to 0.79 and the range
of α′

c values in the DOTA data set is 0.15 to 0.96, which
represents a very tight scaling factor for FL in both data
sets. The proposed normalization of αc in Eq. 2 is more
effective and gives a stable loss calculation for a highly
unbalanced class count in the data set.

Fig. 5. DIOR [5] class and object size distribution.

Fig. 6. DOTA [4] class and object size distribution.

IV. EXPERIMENTS

The DIOR data set consists of 23,463 Google Earth
images of areas in 80 countries. The quality of the images
varies, and the content was captured during multiple seasons
and multiple weather conditions. The data set covers a
wide range of spatial resolutions, object size and object
orientation variability, and a diverse class distribution, as
illustrated in Fig. 5. The spatial resolution of the images
is in the range [0.5m, 30m], and the size of the images in
the data set is 800× 800 pixels. The number of annotated
objects in the data set is 192,472, and they are categorized
into 20 classes [5]. Our training set has 22,450, and the
validation se has 1,012 images.

The DOTA data set consists of 2,430 overhead image
images collected from Google Earth, and several other



Fig. 7. heatmap-based region proposal pipeline results for DOTA data.

satellites [4]. It is also known as the DOTA2.0 dataset, but
we refer to it as DOTA in this paper for simplicity. Google
Earth image sizes in the collection range from 800 × 800
to 4000× 4000 pixels, the image size of the GF-2 satellite
is 29, 200 × 27, 620 pixels. The GSD range in the DOTA
dataset is 0.1 to 0.87 m, and the average number of objects
per image is 220. The data set contains 1,793,658 annotated
objects and is grouped into 18 classes. Most objects have
a total size less than 50 pixels, and objects classes small
vehicle, ship, plane, and large vehicle are densely packed in
the images, as illustrated in Figure 6. In the experiment, we
split the large images into subimages of size 1024× 1024
pixels with an overlap of 200 pixels. Our training set has
12,700 images and the validation set has 4,543 images.

P =
TP

TP + FP
R =

TP

TP + FN
(3)

AP =

k=n−1∑
k=0

[R(k) − R(k + 1)] ∗ P (k) (4)

mAP =
1

n

k=n∑
k=1

AP (k) (5)

Precision P , Recall R, Average Precision AP and mean
AP over all classes are computed in Eq. 3, Eq. 4, and Eq. 5.
True positives TP are results that the model predicted cor-
rectly, false positives FP are outcomes the model missed,
and true negatives TN are outcomes the model erroneously
predicted. All of these metrics were calculated on the basis
of an IOU of 0.5: 0.95 and the number of proposals per
image was set to 256. Precision P measures the fraction of
relevant occurrences among recovered instances, and recall
R is the fraction of objects that the model correctly iden-
tified among all relevant instances. AP (k) is the Average
Precision (AP) of class k in the test set and is calculated
as the weighted sum of precision at each threshold (n is
the number of thresholds), and the weight is the increase
in recall (Eq. 4), and mAP is an average value of AP (k)
over n classes in the data set (Eq. 5).

Precision of two models in two different data sets is
illustrated in Figure 8(a). The average precision of the Base
model in the 18 classes is 49.7% in the DIOR training
set. The average precision of the Base model in DOTA
validation data set is 17.8%. SOD model shows a reasonable
improvement with the integration of the improved backbone
and the difficulty scoring module in Figure 8 in terms of
precision and recall. Figure 8(a) shows an improvement
in AP of 1.5% for DOTA and 2.5% for the DIOR data

Fig. 8. (a) Precision(IOU=0.50:0.95) and (b) Recall(IOU=0.50:0.95)
comparison from different models vs different datasets.

set. The improvement of the SOD model is significant for
classes with small objects and classes that are difficult to
distinguish, see Table I. Recall is illustrated in Figure 8(b).
The recall with Base model for the DIOR and DOTA data
sets is respectively 54.3% and 34.3%. The SOD model
with improved backbone and difficulty module achieved a
significant improvement in all data sets. The recall measure
for the DIOR data set was 1.5% higher than the Base model
(see Figure 8(b)) and increase in DOTA dataset is 2.2%
compared to Base model. The AP for the small rare classes
for two datasets and models is presented in Table I. The
mAP for the DIOR data set is 49.6% for the Base model
and 51.9% for the SOD model, as illustrated in Table I. The
mAP for the DOTA dataset is 17.1% for the Base model
and 18.9% for the SOD model. a 1.8% increase as in Table
I. V. CONCLUSION AND FUTURE WORK

Object detection in aerial images is one of the most
challenging tasks in computer vision research due to many
small and overlapped objects in the images. The success
of DNN object localization depends on the performance
of the large number of related objects annotated in the
training data and on a reliable feature extractor module in
the pipeline. In this paper, we introduce a strong feature
extractor that captures balanced low-level and high-level
features for small objects. Next, we introduce the heatmap-
based region proposal module to better capture small ob-
jects. Finally, we introduce two new modules in the satellite
object detection pipeline, the difficulty scoring module,
which informs the image difficulty to the custom focal loss
module and balances the aerial object detector against trivial
background classes. The proposed SOD method performed
well (see Figures 4 and 7) on the DIOR and DOTA data set.



TABLE I
DIOR AND DOTA AP SCORES FOR SMALL AND DIFFICULT CLASSES

class label mAP Bridge Service
Area

Harbor Ship Storage
Tank

Track Station Tennis
Court

Overpass Airplane Dam Airport Toll Sta-
tion

Num. Ann. NA 207 67 259 2494 2629 154 58 580 163 844 33 56 67

Base 49.6 22.86 54.63 35.03 52.14 42.32 52.60 27.14 74.75 34.92 65.43 29.30 53.73 42.727

SOD 51.9 24.84 58.85 39.72 55.47 44.81 54.25 31.22 76.27 37.51 68.32 31.18 58.12 45.61

class label mAP Plane Bridge Small V Large
Vehicle

Ship Basketball
Court

Storage
Tank

Roundabout Harbor Helicopter Crane Helipad Airport

Num. Ann. NA 3792 634 53660 6739 17650 240 3045 214 3689 86 28 4 89

Base 17.1 36.18 8.61 10.14 21.68 21.23 21.78 18.13 14.32 19.58 10.36 0.00 0.00 11.35

SOD 18.9 38.23 10.33 11.74 21.82 22.94 22.88 20.21 15.10 21.06 12.11 2.41 1.98 14.11

Our proposed model outperformed the baseline model in the
very difficult DOTA satellite dataset by 1.5%, 2.2%, and
1.8% for precision, recall, and mAP metrics, respectively.
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