
2022 IEEE International Conference on Big Data (Big Data)

978-1-6654-8045-1/22/$31.00 ©2022 IEEE 3895

Hybrid Approximate Nearest Neighbor Indexing and
Search (HANNIS) for Large Descriptor Databases

M M Mahabubur Rahman
Computer Science

Texas State University
San Marcos,TX,USA

toufik@txstate.edu

Jelena Tešić
Computer Science

Texas State University
San Marcos,TX,USA

jtesic@txstate.edu

Abstract—In this paper, we present a novel method for efficient
and effective retrieval of similar deep descriptors. Our new hybrid
method for indexing and searching for the approximate nearest
neighbors in high-dimensional large deep-descriptor databases
retrieves truly similar items in the database, even if the retrieval
set is large. The proposed solution —- hybrid approximate nearest
neighbor indexing and search (HANNIS) —- partitions the whole
data space using the kmeans++ algorithm and then indexes
each cluster using adapted hierarchical navigable graphs. This
approach enables us to load items that are truly close to the
incoming query at retrieval time. HANNIS outperforms all state-
of-the-art methods in terms of recall at depths of up to 100 and
offers consistent index loading and retrieval performance.

Index Terms—large set retrieval; high-dimensional indexing
and search; deep descriptors; big data

I. INTRODUCTION

The increasing amount of data requires efficient and scalable
retrieval of similar instances for further analysis in most data
science applications, such as data integration, recommender
systems, information retrieval, software engineering, cybersecu-
rity, outlier detection, classification, and clustering. A similarity
search can be defined as a search for objects from a database
that is close to a query based on some sort of similarity, also
known as the distance function. According to its definition,
the nearest-neighbor problem is to create a data structure that,
given any point, q in a metric space (X,D), gives the point in
P that is closest to q (the point nearest neighbor in P). The
data structure maintains more details about the set P , which is
then utilized to locate the closest neighbor without calculating
all the distances between q and P .

Fig. 1: ANN search

The k-nearest neighbors (k-
NN) search identifies the top k
nearest neighbors to the query
and performs very well for
retrieving exact solutions in
smaller data sets with a lower
dimension. However, the k-NN
search can be sluggish in large
datasets and higher dimensions
because of the "curse of dimen-
sionality". Instead of generating
a model from the training data,
the k-NN search considers the entire data set each time a

query is initiated. This quality leads to high memory usage
and inefficiency in the retrieval result as the data increases.

To address this problem, several approximate nearest-
neighbor (ANN) methods were introduced. ANN methods
work very fast but sacrifice some accuracy by loosening the
condition of exact nearest-neighbor retrieval. ANN methods
handle the "curse of dimensionality" well and thus have superior
performance over the k-NN search in large datasets with higher
dimensions. ANN methods, which aim to produce any point
p′ ∈ P such that the distance from q to p′ is at most c.D(q, p),
for some c ≥ 1 (Fig. 1), can be used to speed up computations
with closest neighbors and reduce memory usage by the data
structure. Many effective ANN solutions have been proposed
in the past decade and can be grouped as graph-based [1]–[5],
hashing-based [6]–[8], and partition-based [9]–[11] methods.
In this paper, we focus on indexing and retrieval improvements
for real deep feature databases for the unknown class discovery
application, and we measure algorithms in terms of high recall
at any depth of retrieval, fast index loading, and retrieval times.

Some libraries [1], [9], [12], [13] have used the graph-
based Hierarchical Navigable Small World (HNSW) algorithm.
Among all ANN methods, the HNSW algorithm [1] shows
promising results in terms of retrieval time [14]. However,
there is still room for improvement in recall. Moreover, all of
the above libraries build a large index that often takes a long
time to load the index from memory during nearest neighbor
retrieval.

In this paper, we show that the hybrid approximate nearest
neighbor indexing and search (HANNIS) approach outper-
forms existing state-of-the-art ANN method libraries built on
the HNSW algorithm. Both indexing and searching for our
proposed method have two phases. For indexing, HANNIS
first clusters all data points using the kmeans++ algorithm and
then arranges the graph into a hierarchical layer of proximity
graphs for each cluster along with their cluster center (centroid)
information. During the search, HANNIS first loads the index
closest to the query and then performs a layer-by-layer search.
In Section II we discuss the indexing and searching procedure
in detail. HANNIS outperforms the state-of-the-art libraries
built on the HNSW algorithm in terms of accuracy for the
publicly available SIFT10M dataset [15]. In Section III, we
discuss our experimental results in detail. Our HANNIS library

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
66

54
-8

04
5-

1/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

56
60

.2
02

2.
10

02
04

64

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2023 at 20:27:05 UTC from IEEE Xplore. Restrictions apply.

3896

is suitable only for vector spaces and does not allow index
updating.

A. Related Work

Neighbor-ANN methods for indexing and searching is based
on local neighborhood data points. Hierarchical Navigable
Small World (HNSW) [1] arranges the graph into a hierarchical
layer of proximity graphs, allowing the algorithm to evaluate
only a needed portion without being dependent on the entire
network. The query process starts at the top layer, where the
edges are the longest, and then performs a greedy search within
that layer until it reaches a local minimum. The search then
switches to the lower layer, where the edges are shorter, and
this time the starting point is the previous local minimum
and continues until the query is reached. So far, HNSW has
provided the best performance in terms of retrieval time among
all ANN methods. However, it takes a significant time to build
indexes for a large data set. Also, loading the offline index
from the database is slow. NSG [3] selects one node and tries
to ensure the existence of monotonic pathways connecting it
to all other nodes. "Navigating Node" is the term given to this
node. The search always begins with the Navigating Node,
which makes the search efficient on an NSG. However, NSG
is excessively sparse, which hurts search speed. Furthermore,
NSG experiences considerable indexing complexity and offers
no theoretical guarantee on nearest-neighbor search. Navigating
the satellite system graph (NSSG) [4] addresses the problem of
theoretical guarantee of NSG by introducing the concept of a
satellite system graph (SSG). During the SSG indexing process,
an angle a is provided for the data set D. The first neighbor
of each data point P ∈ D is the closest data point Q and all
other neighbors R of P satisfy the condition cos∠RPQ<cos∠a.
NSSG also uses the pruning technique during index building
to eliminate the farthest and duplicate data points. The search
process starts at the fixed point and proceeds towards the
neighbor with the smallest distance from the query. This process
repeats until the query is reached. The sparsity of NSSG can
be controlled by changing the angle a, making it faster than
nongraph-based methods. However, the indexing and memory
cost is higher than that of nongraph-based methods.

Neighborhood Graph Tree (NGT) [5] uses a range search
during the graph construction mechanism, and, to avoid a high
degree of neighboring nodes and reduce memory overhead,
applies a three-degree adjustment by connecting each data point
to its three nearest neighbors throughout the graph. During the
query process, NGT generates a seed using the VP tree [16]
and performs a range search to obtain the nearest neighbors. A
major drawback of NGT is that if the query and seed are far
away from each other in the search space, then it takes many
hops in between to reach the query from the seed, and thus
increases the retrieval time. One way to address this problem is
to transform the k nearest neighbor graph into a bidirectional
one [17], and the other is to construct an undirected graph by
continuously inserting elements. All neighboring ANN methods
suffer from a long index-building time and low retrieval for
large deep-descriptor databases [18].

Space Partition ANN methods narrow the entire search
space to a smaller group of similar data points. The similarity
is defined based on some distance metric, and different
partitioning techniques, such as clustering, Voronoi partition,
random divided partition, etc., are exploited to separate each
similar group. The Faiss library enables efficient partitioning
of data in Voronoi cells [15], and the index of each cell
is a centroid of that cell. Faiss uses different compression
techniques, such as product quantization [19] to compress
actual vectors, helping to work faster with large data sets.
Data points in each cell can be further indexed using different
indexing algorithms such as LSH, HNSW, NSG, etc. In the
search algorithm, the centroid with the smallest distance from
the query point narrows the search space down to the target cell
and performs a similarity search on the target cell. However,
for large datasets, a large number of Voronoi regions do not
contain data points, and a lot of time is spent searching for
empty regions [15].

Data Partition ANN methods for indexing and searching
rely on data-driven indexes. One such approach is the kd-tree
where the whole data space is partitioned in the dimension
with the highest variance recursively until a certain number
of data points remain in the leaf. The improvement of the
kd-tree proposes the building of multiple randomized kd-
trees in parallel by splitting the data into one of the five
main dimensions with the highest variance, rather than in the
dimension with the highest variance. During the search process,
a shared priority queue is used to perform a depth-first search
with some heuristic scoring function along all the randomized
kd-trees [20]. FLANN combines the randomized kd-tree
approach with hierarchical k-means [21] for indexing. In the
hierarchical k-means indexing algorithm, k-means clustering
is performed recursively until each leaf contains fewer than
k-children, and the result is the cluster tree. The search method
starts at the root node and crosses the inner node that has the
lowest distance from the query to the cluster center. FLANN
performance degrades in higher-dimensional feature spaces, as
splitting based on a single dimension cannot reflect the entire
data set in the kd-tree. In addition, the choice of initial cluster
centers in the k-means algorithm makes a huge difference in
the final clusters.

Annoy [11] uses a random projection and builds a tree. The
space is split into two subspaces at each intermediate node in
the tree by a randomly selected hyperplane. This process is
done n times to build a forest of trees. One major advantage
of Annoy is that it can use static files as indexes and that the
indexes can be shared between processes. Additionally, Annoy
separates the processes of building an index from loading it,
allowing one to share an index as a file and rapidly map it to
memory. This helps to reduce the memory footprint. However,
Annoy has low performance in terms of speed and accuracy,
which they have mentioned in their GitHub library.

Hashing ANN methods for indexing attempt to hash similar
input items into the same "buckets" with high probability,
and the methods are either data independent, such as locality
sensitive hashing (LSH), or data-dependent methods, such

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2023 at 20:27:05 UTC from IEEE Xplore. Restrictions apply.

3897

Fig. 2: HANNIS: proposed indexing approach.

as locality-preserving hashing (LPH). LSH-based methods
mainly rely on locality-sensitive hash functions with the aim
of generating the same hash code for similar input data points
and different hash codes for dissimilar data points. The most
used hash function for creating hash codes is random linear
projections, where the 2-stable distribution (normal distribution)
is used to select the random projection parameters. LPH-based
methods generate specific hash functions from the entire dataset
distribution. The primary purpose of LPH algorithms is to
preserve the similarity between the original data space and
the hash-coding space. SRS [8] falls under the LSH method,
which first generates m 2-stable random projection vectors
and calculates the projections for each data point. Then, the
m-dimensional projections associated with their respective
IDs are assigned a multidimensional index. SRS uses the R-
tree [22] index structure, which can incrementally return the
(k + 1)th nearest neighbor after calculating the kth nearest
neighbor. During the search, SRS projects the query with
the same m projection vectors to the m-dimensional space.
Then an exact k-NN query is performed incrementally on
the R-tree index centered on the query projection. The major
drawback of SRS is that the points colliding with the query in
a part of a hash function in one hash table are ignored since
the hash tables are built before searching, even though they
are probably close in the vector space. Unlike constructing
a hash table with "static" hash functions, QALSH [7] uses
a dynamic collision count approach. By building a B+-tree
on each random projection and performing incremental range
queries until the top-k candidates are determined, QALSH
pioneered query-aware hash algorithms. It is important to
remember that the hash functions are computed intelligently
based on the range of possible query executions rather than
on a single query point. One drawback of QALSH is that it
meets the query accuracy guarantee; additional hash algorithms
are needed as the dataset size increases, which requires more
time. Furthermore, when new projections are formed, it can
be expensive for QALSH to create B+ trees on top of each
projection to maintain accuracy.

II. METHODOLOGY

In this section, we present our proposed method, which is
divided into two sections. First, we introduce the algorithm for
efficiently preprocessing data and building offline indexes to
accelerate the search, as illustrated in Fig. 2. Next, we propose
the k -NN retrieval approach, which makes use of the proposed
indexing approach.

Algorithm 1: BUILD(HANNIS,X,ncls,niter,M,cand)
Input: multilayer graph HANNIS, data vector X,

number of clusters ncls, number of iteration to
find centroids niter, number of established
connections M, size of dynamic candidate list
cand

Output: Update HANNIS inserting all elements
1 clusters,centroids← KMEANSPP (X,ncls, niter)
2 foreach element (cls, cen) of (clusters, centroids) do
3 foreach c of cls do
4 INSERT (HANNIS, c,M, cand)
5 end
6 SAV E(HANNIS, cen)
7 end

Algorithm 2: SEARCHINDEX(q,centroids,k,n)
Input: query element q, cluster centers centroids,

number of nearest neighbors k, number of
clusters to load n

Output: k closest neighbors to q
1 foreach cen of centroids do
2 find the distance from cen to q
3 end
4 nclus ← n closest centroids to q
5 foreach iclus of nclus do
6 HANNIS ← LOADINDEX(iclus)
7 nclusK← SEARCH(q, k)
8 end
9 neighbors ← k nearest neighbors to q in nclusK

10 return neighbors

a) Index building: To reduce the search space and
accelerate index loading time, we first subdivide the entire
data space into n different partitions of C1, C2, C3,, Cn.
Clustering is a technique that can group similar data points, and
cluster centroids can be used as representatives of a particular
cluster. For this work, we have used the k-means++ algorithm
[23], as it chooses the initial cluster center in a way that results
in better clustering over k-means. All centroid information
and the distances from the centroid to the data points in each
cluster are stored and passed to the next phase to build the
HNSW index (Algorithm 1 line 2). Once the groups have
been calculated, each group is hierarchically arranged. The

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2023 at 20:27:05 UTC from IEEE Xplore. Restrictions apply.

3898

Fig. 3: Proposed HANNIS retrieval pipeline.

graph is arranged in a hierarchical layer of proximity graphs,
where the upper layer contains the data points with the longest
edges (distance to neighboring data points), and the lower
layer contains the data points with the smallest edges (Fig. 2).
This layered structure allows the algorithm to evaluate only
a needed portion without relying on the entire network and
maintains logarithmic complexity. Data points are sequentially
added to the graph one at a time. A probability function,
P (L) = F (L, lm), is used to determine the insertion layer
of an element. The value L denotes the layer at which an
element will be inserted. The probability function normalized
by the "level multiplier" lm, where lm=0 indicates that vectors
are only inserted in layer 0, gives the probability of a vector
insertion in a given layer. We achieve the highest performance
when we reduce the overlap of shared neighbors between layers.
We can reduce overlap by decreasing lm. However, doing so,
as more vectors are moved to the layer 0, increases the average
number of search traversals. Therefore, we use a lm value
of log2(4M/5) that evenly distributes both, where M is the
maximum number of established connections at any data point.
The starting point for building an index is randomly chosen
and a heuristic is used to select neighbors. The fundamental
idea of the heuristic is to use a diversity criterion as a filter
when choosing the closest neighbors to add to a newly added
node in the graph. We skip over a potential neighbor if it is
closer to a neighbor that has already been added (which is
closer to the new node) than it is to the new node and instead
move on to more distant but likely more diverse neighbors.
Given that we add links in both directions, the same criterion
is also applied to the neighbors of the neighbor nodes. Finally,
all indexes are stored with their centroid information so that
only a certain index can be loaded based on the query, which
in turn saves the index loading time(Algorithm 2 line 5).

b) Improving effectiveness of retrieval: Fig. 3 shows the
k -NN retrival approach. During retrieval, the first distances
from the query to all centroids are measured and sorted based
on their distances. Then the index with the smallest distance
from the query to the centroid is loaded for searching. After
loading an index, a greedy search is performed in the graph
index, and the top k NN is returned. In the Algorithm 2 line
3, the distances between all the centroids and the query are
calculated. Then we sort the distances and load the cluster
with the smallest query to the centroid distance (Algorithm
2 line 4). A control parameter determines how many indexes

Fig. 4: Recall@k for DOTA 2.0 dataset with 2,697,873
instances of 1024 dimensional floats for five methods N2,
Nmslib, Faiss HNSW, HNSWlib, and HANNIS.

to load, and loading multiple indexes improves accuracy, but
increases retrieval time (Algorithm 2 line 5). The search within
an index starts with the centroid in the upper layer where
the edges are the longest, and then a greedy search is used
within that layer until it reaches a local minimum (Fig. 3).
The search then switches to the lower layer, where the edges
are shorter. This time, the starting point is the previous local
minimum, and this process continues until the query is reached
and the top k-NN to the top k is returned (Algorithm 2 line
8). For multi-index search, each index returns its top k-NN to
the query. Then, all the retrieval results are sorted based on
their distance to the query. Finally, k -NN are chosen as the
final retrieval result(Algorithm 2 line 9). By loading multiple
indexes, our multi-index search handles the situation where
the query lands on the boundary of a cluster in feature space
such that some of its actual nearest neighbors are in a different
cluster.

III. EXPERIMENTS

For all of our experiments, we have used the SIFT10M
benchmark data set with 10 million instances and 128 dimen-
sions [24], and the DOTA 2.0 data set with 1,024 dimensions
and 2,7 million instances [25]. For the subsequent data set, we
extracted deep features using Faster-RCNN [26] with Resnet50
[27] as the backbone and the Detectron2 [28] code baseline.

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2023 at 20:27:05 UTC from IEEE Xplore. Restrictions apply.

3899

Fig. 5: Precision@k for DOTA 2.0 dataset with 2,697,873
instances of 1024 dimensional floats for five methods N2,
Nmslib, Faiss HNSW, HNSWlib, HANNIS.

Fig. 6: F1-score@k for DOTA 2.0 dataset with 2,697,873
instances of 1024 dimensional floats for five methods N2,
Nmslib, Faiss HNSW, HNSWlib, HANNIS.

Performance analysis We measured the performance of our
HANNIS method with four different state-of-the-art methods
built on the HNSW algorithm. Five performance measurement
metrics have been used to evaluate the performance of each
method: recall@k, precision@k, f1-score@k, index loading
time, and retrieval time. Fairness to all, we used the same
parameters for all search methods, including HANNIS. The
number of established connections and the size of the dynamic
candidate list was set at 16 and 200, respectively, throughout
all experiments. All experiments were carried out on Ubuntu
20.04.3 server with 11th generation Intel® CoreTM i9-11900K
@ 3.5GHzX16 CPU with 128GB RAM and NVIDIA GeForce
RTX 3070 8GB mem GPU.

Recall @ k is measured as the percentage of closest
neighbors in the top k closest in k, k in the [5, 10, 20, 50, 100]
retrieval set of the 5 methods compared to the truth of the
ground in k, GTk, a brute-force search for nearest neighbors in

Fig. 7: Index loading times into memory for DOTA 2.0 dataset
with 2,697,873 instances of 1024 dimensional floats for k =
100 for five methods N2, Nmslib, Faiss HNSW, HNSWlib,
HANNIS.

Fig. 8: Retrieval times for the DOTA 2.0 dataset with 2,697,873
instances of 1024 dimensional floats for k = 100 for five
methods N2, Nmslib, Faiss HNSW, HNSWlib, HANNIS.

Euclidean space: Rk = |Mk ∩GTk|/|GTk|. Mk is the set of
descriptors recovered by the method M , M ∈ [N2, NMSlib,
HNSWlib, FaissHNSW, HANNIS], and |Mk ∩ GTk| is the
number of true positives, the number of nearest neighbors
recovered by the method Mk that match GTk. Precision @ k
is measured as the fraction of the retrieval set that is relevant
to the query: Pk = |Mk ∩GTk|/|Mk|. F1-score is measured
by Fk = 2 ∗Rk ∗Pk/(Rk +Pk). The load time of the index
measures the time it takes to load the index from memory for
retrieval. Retrieval time defines the time to retrieve the nearest
neighbor k for a single query.

DOTA2.0 dataset performance measures for five methods
are compared in Fig. 4. The set contains 2,697,873 instances
of 1024-dimensional object deep feature descriptors extracted
from DOTA2.0 using ResNet, and we are evaluating the method
most suitable for unknown class discovery in the DOTA2.0
dataset. Our criteria are that the recall@k needs to remain

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2023 at 20:27:05 UTC from IEEE Xplore. Restrictions apply.

3900

Fig. 9: Recall @ k for the SIFT dataset with 10 million instances
of 128-dimensional integers for five methods N2, NMSlib,
FaissHNSW, HNSWlib, HANNIS.

consistent as k increases while keeping the index loading time
and retrieval time comparable to the state-of-the-art. We tried
different numbers of clusters during the k-means++ clustering
phase and got the best results in 20 clusters. Fig. 4 recall@k-
retrievals demonstrate HANNIS consistent retrieval recall@k
slightly better than HNSWLib, while the HANNIS index
loading time is much faster in Fig. 7, and retrieval times are
comparable in Fig. 8. The performance of NMSlib degrades
rapidly for k > 5 (Fig. 4), and while its retrieval times are
the shortest (Fig. 8), its index loading times are the highest
Fig. 7, and the method is not suitable. N2 has comparably
fast index loading times (Fig. 7) and retrieval times (Fig. 8),
but performance quickly degrades for the larger retrieval set
(Fig. 4). FaissHNSW has a comparably higher index loading
time (Fig. 7) and faster retrieval time (Fig. 8 but performance
quickly degrades for k>10. Precision@k-retrievals in Fig. 5 and
F1-score@k-retrieval in Fig. 6 shows HANNIS out-performs
all the methods at allk ∈ [5, 10, 20, 50, 100]. HNSWlib and
FaissHNSW do well in k = 5, but their performance degrades
quickly for higher retrievals in Fig. 5 and Fig. 6. N2 and
NMSlib have consistently low precision and low F1 score for
all k in Fig. 5 and Fig. 6. HANNIS shows to be the most
suitable algorithm for unknown class discovery for the DOTA
2.0 dataset.

SIFT dataset performance measures for five methods are
compared in Fig. 9. The set contains 10,000,000 instances
of 128-dimensional integer SIFT [24], [29] image descriptors
extracted from Caltech-256 41

∏
41 whole image patches. As

the features were extracted from image patches and not object
regions, our criteria here are to evaluate the most suitable
method to match small image regions for large values of k for
the “needle in haystack” search scenarios while keeping the
index loading time and retrieval time in check for k = 100
[30] (Fig. 9). We tried different numbers of clusters during
the k-means++ clustering phase and got the best results in 15
clusters. Recall@k-retrievals demonstrates interesting behavior

Fig. 10: Precision@k for SIFT dataset with 10 million instances
of 128-dimensional integers for five methods N2, NMSlib,
FaissHNSW, HNSWlib, HANNIS.

Fig. 11: F1 score @k for the SIFT dataset with 10 million
instances of 128-dimensional integers for five methods N2,
NMSlib, FaissHNSW, HNSWlib, HANNIS.

for all methods that differ from DOTA2.0. HANNIS is now
consistently dominating in the effectiveness of retrieval at all
k ∈ [5, 10, 20.50.100], and consistently better than HNSWlib
for k > 5 with smaller index loading times (Fig. 12) at the price
of much higher retrieval time (Fig. 13). FaissHNSW has higher
index loading times Fig. 12 and comparable retrieval times
Fig. 8, but the performance of FaissHNSW quickly degrades
for k > 5 Fig. 4 and we do not consider the method appropriate
for this scenario. We also observe an interesting behavior of N2
in Fig. 9: the effectiveness of the indexing method is improving
with larger k and approaching the effectiveness of HNSWlib
for k = 100 at low index loading time (Fig. 12) and low
retrieval time (Fig. 13). The performance of NMSlib improves
for k = 10 and then decreases, even if the retrieval times are
the fastest for k = 100 Fig. 13. The precision@k retrieval in
Fig. 10 shows the dominant performance of HANNIS over N2,
NMSlib, and FaissHNSW at all k. HANNIS performs better

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2023 at 20:27:05 UTC from IEEE Xplore. Restrictions apply.

3901

Fig. 12: Index loading times in memory for the SIFT dataset
with 100,000 128-dimensional integer instances for k = 100
for five methods N2, NMSlib, FaissHNSW, HNSWlib, and
HANNIS.

Fig. 13: Retrieval time for the SIFT dataset with 10,000 128-
dimensional integer instances for k = 100 for five methods
N2, NMSlib, FaissHNSW, HNSWlib, and HANNIS.

than HNSWlib for k > 10, but interestingly HNSWlib catches
up with HANNIS for k = 100 in Fig. 10. F1-score@k retrieval
shows a similar trend as Precision@k for the SIFT10M dataset
in Fig. 11. HANNIS outperforms N2, NMSlib and FaissHNSW
at all k ∈ [5, 10, 20.50.100] in Fig. 11. The performance of
HNSWlib degrades for k > 10 but eventually catches up to
HANNIS at k = 100 in Fig. 11. In general, HANNIS proved
to be the most robust algorithm for the “needle in the haystack”
similar patch search in the SIFT Caltech-256 data set.

Next, we analyze the five methods index load timing and
retrieval timing on a log scale for 2.7 million DOTA2.0 1024-
dimensional float vectors (2764 million floats), 10 million
SIFT10M 128-dimensional integer vectors (1,280 million
integers) per method to uncover any common trends. DOTA2.0
is approximately nine times the size of SIFT10M. Fig. 14
compares the index loading time, and NMSlib, HNSWlib,
FaissHNSW, and HANNIS index load time is proportional
to the size of the dataset, and HANNIS has the best overall

Fig. 14: Index loading time per method for 5 approaches on 2
datasets.

Fig. 15: Retrieval time for 5 approaches for 2 datasets.

index load timing. N2 has the lowest index loading time, and
it does not correlate to data set size in instances and in feature
dimension, and type. Fig. 15 compares retrieval time per method
for k = 100. For N2, FaissHNSW, and HANNIS methods,
retrieval time corresponds to the number of instances in the
dataset, and HANNIS seems to do better on high-dimensional
descriptors than the comparable methods. For HNSWlib, the
retrieval time is directly proportional to the dataset size, and it
is hard to interpret the rule for NMSlib methods.

IV. CONCLUSION

The approximate nearest neighbor search approach mitigates
the high cost of brute force k-Nearest Neighbor Search in large
and high-dimensional data. In this paper, we have proposed
a nearest-neighbor indexing and search method (HANNIS) to
index and retrieve similar content from high-dimensional deep-
descriptor data set, and demonstrated method’s effectiveness for
two real scenarios: unknown class discovery and whole-image
feature search. HANNIS efficiently clusters all the data points
using kmeans++ and then builds a Hierarchical Navigable
Small World (HNSW) graph index for each cluster. During

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2023 at 20:27:05 UTC from IEEE Xplore. Restrictions apply.

3902

retrieval, HANNIS only loads the indexes that are most similar
to the query. Recall exceeds that of all existing state-of-the-art
libraries built on the HNSW algorithm up to 100. HANNIS
is up to 18 times faster than state-of-the-art libraries in terms
of index loading time. Retrieval times are similar to those of
state-of-the-art libraries for searching in vector space.

ACKNOWLEDGEMENT

This work is partially supported by the NAVAIR SBIR
N68335-18-C-0199. The views, opinions, and/or findings
contained in this article are those of the authors and should
not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government paper
references.

REFERENCES

[1] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs. IEEE transactions on pattern analysis and machine intelligence,
42(4):824–836, 2018.

[2] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor
graph construction for generic similarity measures. In Proceedings of
the 20th international conference on World wide web, pages 577–586,
2011.

[3] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate
nearest neighbor search with the navigating spreading-out graph. arXiv
preprint arXiv:1707.00143, 2017.

[4] Cong Fu, Changxu Wang, and Deng Cai. High dimensional similarity
search with satellite system graph: Efficiency, scalability, and unindexed
query compatibility. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

[5] Masajiro Iwasaki. Ngt: Neighborhood graph and tree for indexing, 2015.
[6] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and

Ludwig Schmidt. Practical and optimal lsh for angular distance. Advances
in neural information processing systems, 28, 2015.

[7] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng.
Query-aware locality-sensitive hashing for approximate nearest neighbor
search. Proceedings of the VLDB Endowment, 9(1):1–12, 2015.

[8] Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin.
Srs: solving c-approximate nearest neighbor queries in high dimensional
euclidean space with a tiny index. Proceedings of the VLDB Endowment,
2014.

[9] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data, 7(3):535–547, 2019.

[10] Marius Muja and David G Lowe. Scalable nearest neighbor algorithms
for high dimensional data. IEEE transactions on pattern analysis and
machine intelligence, 36(11):2227–2240, 2014.

[11] Erik Bernhardsson. Annoy: Approximate Nearest Neighbors in
C++/Python, 2018. Python package version 1.17.1.

[12] GeonHee Lee. TOROS N2 - lightweight approximate Nearest Neighbor
library which runs fast even with large datasets, 2017. Python package
version 0.1.7.

[13] Leonid Boytsov and Bilegsaikhan Naidan. Engineering efficient and
effective non-metric space library. In International Conference on
Similarity Search and Applications, pages 280–293. Springer, 2013.

[14] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-
benchmarks: A benchmarking tool for approximate nearest neighbor
algorithms. Information Systems, 87:101374, 2020.

[15] Dmitry Baranchuk, Artem Babenko, and Yury Malkov. Revisiting the
inverted indices for billion-scale approximate nearest neighbors. CoRR,
abs/1802.02422, 2018.

[16] Masajiro Iwasaki and Daisuke Miyazaki. Optimization of indexing based
on k-nearest neighbor graph for proximity search in high-dimensional
data. arXiv preprint arXiv:1810.07355, 2018.

[17] Masajiro Iwasaki. Pruned bi-directed k-nearest neighbor graph for
proximity search. In International Conference on Similarity Search
and Applications, pages 20–33. Springer, 2016.

[18] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie
Zhang, and Xuemin Lin. Approximate nearest neighbor search on
high dimensional data—experiments, analyses, and improvement. IEEE
Transactions on Knowledge and Data Engineering, 32(8):1475–1488,
2019.

[19] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and
machine intelligence, 33(1):117–128, 2010.

[20] Chanop Silpa-Anan and Richard Hartley. Optimised kd-trees for fast
image descriptor matching. In 2008 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[21] Keinosuke Fukunaga and Patrenahalli M. Narendra. A branch and bound
algorithm for computing k-nearest neighbors. IEEE transactions on
computers, 100(7):750–753, 1975.

[22] Antonin Guttman. R-trees: A dynamic index structure for spatial
searching. In Proceedings of the 1984 ACM SIGMOD international
conference on Management of data, pages 47–57, 1984.

[23] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of
careful seeding. Technical report, Stanford, 2006.

[24] Xiping Fu, Brendan McCane, Steven Mills, Michael Albert, and Lech
Szymanski. Auto-jacobin: Auto-encoder jacobian binary hashing. CoRR,
abs/1602.08127, 2016.

[25] Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie, Jiebo
Luo, Mihai Datcu, Marcello Pelillo, and Liangpei Zhang. Dota: A large-
scale dataset for object detection in aerial images. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
3974–3983, 2018.

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-
cnn: Towards real-time object detection with region proposal networks.
Advances in neural information processing systems, 28, 2015.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778, 2016.

[28] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross
Girshick. Detectron2. https://github.com/facebookresearch/detectron2,
2019.

[29] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.
[30] Jelena Tesic and B. S. Manjunath. Nearest neighbor search for relevance

feedback. In 2003 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2003), 16-22 June 2003, Madison,
WI, USA, pages 643–648. IEEE Computer Society, 2003.

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2023 at 20:27:05 UTC from IEEE Xplore. Restrictions apply.

