
2022 IEEE International Conference on Big Data (Big Data)

978-1-6654-8045-1/22/$31.00 ©2022 IEEE 6802

Evaluating Hybrid Approximate Nearest Neighbor
Indexing and Search (HANNIS) for

High-dimensional Image Feature Search
M M Mahabubur Rahman

Computer Science
Texas State University
San Marcos,TX,USA

toufik@txstate.edu

Jelena Tešić
Computer Science

Texas State University
San Marcos,TX,USA

jtesic@txstate.edu

Abstract—In this paper, we evaluate the performance of a
novel method for efficient and effective retrieval of similar high-
dimensional image features. The proposed solution —- hybrid
approximate nearest neighbor indexing and search (HANNIS) —-
retrieves truly similar items in the database, even if the retrieval
set is large. This approach enables us to load items that are truly
close to the incoming query at retrieval time. HANNIS outperforms
all state-of-the-art methods in terms of recall, precision, and F1
score at depths of up to 100 and offers the fastest index loading
and consistent retrieval performance.

Index Terms—large set retrieval; high-dimensional indexing
and search; deep descriptors; big data

I. INTRODUCTION

The k-nearest neighbors (k-NN) search identifies the top
k nearest neighbors to the query and performs very well for
retrieving exact solutions in smaller data sets with a lower
dimension. However, the k-NN search can be sluggish in
large datasets and higher dimensions because of the "curse of
dimensionality".

To address this problem, several approximate nearest-
neighbor (ANN) methods were introduced. ANN methods
work very fast but sacrifice some accuracy by loosening the
condition of exact nearest-neighbor retrieval. ANN methods
handle the "curse of dimensionality" well and thus have superior
performance over the k-NN search in large datasets with higher
dimensions. Many effective ANN solutions have been proposed
in the past decade and can be grouped as graph-based, hashing-
based, and partition-based methods.

Some libraries [1]–[4] have used the graph-based
Hierarchical Navigable Small World (HNSW) algorithm.
Among all ANN methods, the HNSW algorithm [1] shows
promising results in terms of retrieval time [5]. However, there
is still room for improvement. Moreover, all of the above
libraries build a large index that often takes a long time to
load the index from memory during nearest neighbor retrieval.

In this paper, we show that the hybrid approximate nearest
neighbor indexing and search (HANNIS) approach outperforms
existing state-of-the-art ANN method libraries built on the
HNSW algorithm. In Section II we discuss the indexing and
searching procedure in detail. In Section III, we discuss our
experimental results in detail.

II. METHODOLOGY

In this section, we present our proposed method, which is
divided into two sections.

a) Index building: To reduce the search space and
accelerate the index loading time, we first subdivide the entire
data space into n different partitions of C1, C2, C3,, Cn 1.
For this work, we have used the k-means++ algorithm, and the
centroid information for each cluster is stored and passed to
the next phase to build the HNSW index. Once the groups have
been calculated, each group is arranged into a hierarchical layer
of proximity graphs (Fig. 2). The starting point for building an
index is chosen randomly, and a heuristic is used to select the
neighbors. Finally, all indexes are stored with their centroid
information so that only a certain index can be loaded based
on the query, which in turn saves the index loading time.

b) Improving effectiveness of retrieval: Fig. 3 shows
the k -NN retrieval approach. During the retrieval, the index
with the smallest distance from the query to the centroid is
loaded for searching. The search within an index starts with
the centroid in the upper layer where the edges are the longest,
and then a greedy search is used within that layer until it
reaches a local minimum (Fig. 3). Then the search switches to
the lower layer starting with the previous local minimum, and
this process continues until the query is reached and the top
k-NN to the top k is returned. For multi-index search, each
index returns its top k-NN to the query. Then, all the retrieval
results are sorted on the basis of their distance to the query.
Finally, k -NN are chosen as the final retrieval result.

III. EXPERIMENTS

For all of our experiments, we have used the DEEP10M
benchmark data set with 10 million instances and 96 dimensions
[6], SIFT10M with 10 million instances and 128 dimensions
[7], and the DOTA 2.0 data set with 1,024 dimensions and 2,7
million instances [8].

Performance analysis We measured the performance of our
HANNIS method with four different state-of-the-art methods
built on the HNSW algorithm [1]–[4] and are evaluating the
method most suitable for similar image feature retrieval. Our
criteria is that recall@k,precision@k, and f1-score@k need to

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
66

54
-8

04
5-

1/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

56
60

.2
02

2.
10

02
10

48

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2023 at 20:30:07 UTC from IEEE Xplore. Restrictions apply.

6803

Fig. 1: Clustering with kmeans++ for building indexes
for each cluster Fig. 2: Indexing with adapted HNSW approach

Fig. 3: Proposed HANNIS retrieval pipeline.

Fig. 4: Recall@k for DOTA 2.0 Fig. 5: Recall@k for SIFT Fig. 6: Recall@k for Deep10M

Fig. 7: Precision@k for DOTA 2.0 Fig. 8: Precision@k for SIFT Fig. 9: Precision@k for Deep10M

stay consistent as k increases while keeping the index loading
time and retrieval time comparable to the state of the art.

Recall@k-retrievals demonstrates HANNIS is consistently
dominating in recall at all k ∈ [5, 10, 20, 50, 100] for DOTA
2.0 (Fig. 4) and the SIFT data set (Fig. 5), and consistently
better than NMSlib for k > 40 in (Fig. 6) with smaller index
loading times (Fig. 13) at the price of much higher retrieval
time (Fig. 14). We also observe interesting behavior of N2
for all three datasets: the recall of the indexing method is
improving with larger k at a low index loading time (Fig. 13)
and low retrieval time (Fig. 14). However, it has the poorest
performance amongst all methods at lower k (Fig. 4, 5, 6).
FaissHNSW performance quickly degrades for k > 5 for all
three data sets (Fig. 4, 5, 6), and we do not consider the method
appropriate for this scenario.

Precision@k-retrievals shows HANNIS out-performs all the
methods at all k ∈ [5, 10, 20, 50, 100] for DOTA 2.0 in Fig. 7.
We also observe HNSWlib in Fig. 8: the effectiveness of the
indexing method is improving with a larger k and exceeded
the effectiveness of HANNIS for k = 100 with a longer
index loading time (Fig. 13) and a low retrieval time (Fig. 14).
NMSlib shows an interesting trend for the DEEP10M dataset
in Fig. 9: the indexing method has high precision among all the
methods at lower k, but the performance degrades quickly as k
increases. HANNIS performs marginally better than HNSWlib
for the DEEP10M dataset at all k in Fig. 9 with a faster index
loading time (Fig. 13) and a longer retrieval time (Fig. 14). N2
has consistently low precision for all three datasets in Fig.. 7, 8
and 9 with a lower index loading time (Fig. 13) and a lower
retrieval time (Fig. 14).

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2023 at 20:30:07 UTC from IEEE Xplore. Restrictions apply.

6804

Fig. 10: F1-score@k for DOTA 2.0 Fig. 11: F1-score@k for SIFT Fig. 12: F1-score@k for Deep10M

Fig. 13: Index loading time for 5 approaches. Fig. 14: Retrieval time for 5 approaches.

F1-score@k-retrievals demonstrates the dominating
performance of HANNIS for all the three datasets in
Fig. 10, 11 and 12 at higher k. We see an exception in
Fig. 12 for NMSlib where the indexing method has the
highest F1 score among all methods for k < 40, but its
performance degrades at higher k. N2 and FaissHNSW have
a consistently lower F1 score than HANNIS for all three
datasets in Fig. 10, 11 and 12. HNSWlib performs marginally
better than HANNIS at k = 100 in Fig. 11, in all other cases
(Fig. 10, 11 and 12), HANNIS performs better.

Index load and Retrieval time We analyze the five methods
index load timing and retrieval timing on a log scale per method
to uncover any common trends. DOTA2.0 is approximately
3 times the size of Deep10M and nine times the size of
SIFT10M. Fig. 13 compares the index loading time, and
NMSlib, HNSWlib, FaissHNSW, and HANNIS index load
time is proportional to the size of the dataset, and HANNIS
has the best overall index load timing. N2 has the lowest
index loading time, and it does not correlate to data set size in
instances and in feature dimension, and type. Fig. 14 compares
retrieval time per method for k = 100. For N2, FaisHNSW, and
HANNIS methods, retrieval time corresponds to the number
of instances in the dataset, and HANNIS seems to do better
on high-dimensional descriptors than the comparable methods.
For HNSWlib, the retrieval time is directly proportional to the
dataset size, and it is hard to interpret the rule for NMSlib
methods.

IV. CONCLUSION

The brute-force k-Nearest-Neighbor Search in large and high-
dimensional data is computationally expensive. In this paper,
we have demonstrated the efficiency of our approximate nearest-
neighbor indexing and search method (HANNIS) to index and
search for similar image features from a high-dimensional

deep-descriptor data set. HANNIS outperforms the state-of-the-
art libraries built on the HNSW algorithm in terms of recall,
precision, and F1 score up to 100. HANNIS offers up to 18
times faster index loading into the memory, and the retrieval
times are compatible with state-of-the-art libraries.

ACKNOWLEDGEMENT

This work is partially supported by the NAVAIR SBIR
N68335-18-C-0199. The views, opinions, and/or findings
contained in this article are those of the authors and should
not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government paper
references.

REFERENCES

[1] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs.
IEEE transactions on pattern analysis and machine intelligence, 42(4):824–
836, 2018.

[2] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data, 7(3):535–547, 2019.

[3] GeonHee Lee. TOROS N2 - lightweight approximate Nearest Neighbor
library which runs fast even with large datasets, 2017. Python package
version 0.1.7.

[4] Leonid Boytsov and Bilegsaikhan Naidan. Engineering efficient and
effective non-metric space library. In International Conference on
Similarity Search and Applications, pages 280–293. Springer, 2013.

[5] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-
benchmarks: A benchmarking tool for approximate nearest neighbor
algorithms. Information Systems, 87:101374, 2020.

[6] Dmitry Baranchuk, Artem Babenko, and Yury Malkov. Revisiting the
inverted indices for billion-scale approximate nearest neighbors. CoRR,
abs/1802.02422, 2018.

[7] Xiping Fu, Brendan McCane, Steven Mills, Michael Albert, and Lech
Szymanski. Auto-jacobin: Auto-encoder jacobian binary hashing. CoRR,
abs/1602.08127, 2016.

[8] Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie, Jiebo Luo,
Mihai Datcu, Marcello Pelillo, and Liangpei Zhang. Dota: A large-scale
dataset for object detection in aerial images. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3974–3983,
2018.

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2023 at 20:30:07 UTC from IEEE Xplore. Restrictions apply.

