
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Improving the Energy Efficiency of Real-time DNN
Object Detection via Compression, Transfer

Learning, and Scale Prediction

Debojyoti Biswas
Dept. of Computer Science

Texas State University
San Marcos, TX, US

M M Mahabubur Rahman
Dept. of Computer Science

Texas State University
San Marcos, TX, US

Ziliang Zong
Dept. of Computer Science

Texas State University
San Marcos, TX, US

Jelena Tešić
Dept. of Computer Science

Texas State University
San Marcos, TX, US

Abstract— In recent years, computational accessibility has
enabled the use of Deep Neural Network (DNN) for computer
vision applications on devices with limited computational
resources. We focus on the real-time object detection algorithms
deployed on UAV-friendly devices. The hardware deployed on
UAV must be lightweight and thus limited in processing power,
memory, and storage capacity. Lightweight modeling
architecture does not suffice for high-recall reconnaissance
applications. In this paper, we propose to reduce power
consumption of YOLOv5 DNN architecture. We decided to use
compressed convolutional technique, transfer learning,
backbone shrinkage, and scale prediction to reduce the number
of learnable parameters from the YOLOv5model. Our
approach reduced the size of the model significantly and
lowered the power consumption in turn. GPU memory and the
Billion Floating-Point Operations Per Second (GFLOPS) for the
YOLOv5model will keep the performance measure of the model
as the baseline state-of-the-art. The best resulting model has a
63.86% mean average precision (mAP) and a GFLOPS of 97.7
on “DIOR”, an overhead imagery data set. The proposed
approach has lowered GPU memory consumption of the model
by 34% and lowered the energy consumption by 10 Watts
compared to the baseline model.

Keywords— Energy Efficiency, YOLOv5, real-time object
detection, Mobile Computing, UAV

I. INTRODUCTION
Overhead video sensors capture data at a rate far higher

than current human-in-loop can effectively monitor and
analyze. Real-time detection in overhead videos significantly
reduces the volume of video data that needs to be transmitted
and evaluated by humans on the ground for a range of
applications: traffic management and control on land and sea,
disaster control (floods, fires, earthquakes), surveillance and
recovery missions in the mountains or at sea, wild-life
migration patterns, object localization and detection, etc.
Large video stream transmissions from drones and satellites to
Earth-bound computing hardware pose a burden for the
wireless communication channels and introduce latency. It
takes considerable time and attention for a human-in-loop to
evaluate and validate the intelligence gathering in video
streams. Mission-critical real-time applications, such as fire-
rescue operation and traffic monitoring systems, do not
tolerate latency.

 The solution is to deploy state-of-the-art deep neural
network (DNN) real-time object detection algorithms on edge
and mobile devices. The Convolutional Neural Network
(CNN) architectures are used as a backbone in complex DNN
architectures for reliable feature extraction, e.g., ResNet101
[1], Darknet [2], and MobileNets [3]. DNN architectures with
CNN backbones are the most successful for computer vision
tasks because of their nature of preserving information from
images. Overhead cameras typically capture large images at
high resolution; for example, the image dimension in the

DIOR [4], DOTA2.0 [5] data set is 20,000 pixels by 20,000
pixels. The large size of the images increases the number of
learnable parameters and the amount of computational
complexity in the DNN pipeline. Recent research has
proposed lighter models that use less computational power
and have been deployed on edge computing devices [6], [7].
Large high-resolution images contain a lot of objects. The size
of the objects is much smaller than the size of the image, and
the number of local features is also small, making the
overhead object detection notoriously difficult; therefore, the
performance of Retina-Net or YOLO-ReT models
significantly degrades. This problem can be solved with a light
model with less computational power and energy that can (1)
fit on edge devices; and (2) detect small objects with the same
effectiveness level as a full DNN model.

We selected YOLOv5 [24] as a baseline architecture due
to its ability to detect small objects in large images [8], [9].
We used the bottleneck convolution architecture to consume
less energy than the original version and employed
compressed convolutional technique and backbone shrinkage
to make large CNN blocks smaller. Thus, we reduced the
number of matrix operations, which in turn reduced the
number of GFLOPS and made the model smaller and more
energy efficient. Moreover, we utilized contextual
information on the size distribution of the objects (Fig. 1) to
make a scale prediction where object size was below 200px.
We designed the transfer, learning and freezing the partial
network approach to prevent model degradation and achieve
up to 34% reduction in GPU memory and power consumption.
The remainder of the paper is organized as follows: Section II
contains related work, Section III discusses the data set,
Section IV is the methodology, Section V includes the results
and discussions, and Section VI concludes the findings.

II. RELATED WORK
The DNN architectures for the object detection approaches

originate from the two schools: Region Proposal Network
(RPN) [10] and You Only Look Once (YOLO) [11]. RPN-
reliant DNN architectures rely on CNN backbones to extract
deep features from input images, e.g. [7]. Next, a small DNN,
the Region Proposal Network (RPN), generates and filters
object regions and feeds them into the detection network
layers [12]. RPN-based architectures require more
computational power due to the sequential processing of
features, regions, and classes.

YOLO-based detectors parallelize the process and
consider object detection as a regression task with respect to
spatially separated bounding boxes associated with class
probabilities [2]. YOLO9000 predicts the coordinates of the
bounding boxes, directly using fully connected layers on top
of the convolutional feature extractor [13]. YOLOv3 adds
multiple convolutional layers to generate multiscale feature

maps and predicts boundary boxes using dimension clusters
[1]. The incremental improvement of YOLOv3 is YOLOv4,
which adds a couple of new features such as Weighted-
Residual-Connections (WRC), Cross-Stage-Partial-
Connections (CSP), and Self-adversarial-training (SAT). All
these new architectures help the YOLOv4 to gain the state-of-
art result in large scale datasets. The latest YOLOv5 adds
more bags-of-tricks, and, with the addition of Faster Spatial
Pyramid Pooling (SPPF), increases respective fields in the
backbone features with almost no overhead in the detection
operation speed. The TPH-YOLOv5 modifies YOLOv5 using
the transformer prediction head to obtain a diverse range of
features from the CNN input image and the attention
mechanism for feature extraction [9]. SSD uses low-level
convolutional feature maps from high-resolution images to
detect small objects [14]. All these models are 100MB+ in
size and range from 100MB to 372MB depending on the
complexity of the networks. The models also require high-
memory GPU workstations. The GPU memory requirement
for most of these models is 8GB when trained with aerial
images [8]with a batch size of 2 and the required RAM is
32GB.

Overhead large high-resolution images contain a lot of
objects. The size of the objects is much smaller than the size
of the image, and the number of local features is small. The
stochastic region proposal attempted to address these
shortcomings without reducing the size of the model. The
stochastic method [15]proposes regions using the probabilistic
goodness score of each region based on the size, shape, and
recognition score of each object. Furthermore, Berat et al.
proposed SyNet [16]which combines the features of signal
stage and multistage detectors. The goal of combining two
different types of models is to decrease the high false-negative
rate from the multistage detector and increase the region
proposal quality from the single stage detectors. This network
is considered a popular aerial/overhead image dataset called
“Visdrone” for model evaluation. For the baseline set,
CenterNet and Mask RCNN are used in “SyNet”.

Researchers have reduced the size of the DNN models for
object detection tasks. Region Proposal Networks (RPN) in
traditional two-stage detectors become increasingly
computationally expensive for overhead imagery. As the

number of small objects and potential region candidates rises,
the number of Non-Max Suppression (NMS) operations
exponentially increases. The Center-Net [17] is based on the
key points in the image, and the center of each object in the
ground truth is considered as a key point. Model size and
inference savings come from the CenterNet use of the
heatmap for region proposal,,not RPN.

 Researchers have lessened the GPU memory and
power consumption by reducing the load of the heaviest layer
in the DNN architectures. The lightweight version of
RetinaNet [18]was able to reduce noticeable numbers of
learnable parameters and GFLOPS as compared to the
RetinaNet [19]. RetinaNet uses FPN for different scales of
features from the input images followed by different shapes
and aspect ratios of anchor boxes to create regions of interest.
The anchor boxes are placed on each cell of the FPN output
features and IOU is calculated with the ground-truth for
prediction. The reduction analysis in this work [18] is based
on GFLOPS and compares the performance of different
models on the MSCOCO dataset in terms of mAP and
GFLOPS, without mentioning the power consumption metrics
and the memory usage.

CNN compression is one of the most prominent
techniques for DNN model size reduction. Up to 87% of the
operations in DNNs are convolution operations. Reducing the
convolution operations from the network can reduce the
number of learnable parameters as well as the GFLOPS. One
of the first works towards CNN compression is
SQUEEZENET [20]. The idea behind CNN compression is
that a smaller filter size would require a smaller number of
convolution operations as well as matrix storage space in the
GPU. SQUEEZENET uses different approaches for CNN
compression, such as reducing the filter size from 3x3 to 1x1,
dropping the input channel size to 3x3, and downsampling the
latter part of the network for a smaller number of activation
functions. MobileNets achieves CNN compression by using
model shrinking parameters, reduced input size, and transfer
learning to build a smaller model [3]. This work [21] uses
Parallel architecture, multi-GPU parallel processing,
hierarchical on-chip storage organization, and the efficient
application specific hardware designed to achieve efficient
object detection. SKYNET is another hardware-efficient

Fig.1. DIOR dataset analysis: (a) number of class instances and (b) object pixel size distribution in an image dataset.

neural network designed to deliver state-of-the-art detection
accuracy and speed for embedded systems [22]. SKYNET
provides a novel bottom-up DNN design approach taking
hardware constraints into account.

III. DATASET
The DIOR [4] overhead imagery dataset was released

recently to address the lack of diversity in the properties of the
image features in existing benchmarks. The dataset consists of
23,463 Google Earth images and 192,472 object instances.
The size of the images in the dataset is 800 × 800 pixels, and
the spatial resolutions range from 0.5 to 30 m. The objects are
manually localized and classified into 20 classes of objects, as
illustrated in Fig. 1(a). The DIOR dataset is specific in the
following: (i) heterogeneous object categories, large
variations of the pixel size of objects per category, and large
variations of the number of instances per category, as
illustrated in Fig. 1(a) ; (ii) large number of spatial resolutions
and of inter- and intraclass size variability across objects that
comes from the different orientations of the objects from the
overhead view; (iii) large content variability over
geographical area (80 countries), including weather
conditions, seasons, and image quality; and (iv) high interclass
similarity and intra-class diversity. The interclass similarity
also arises by adding new classes in the dataset, such as
“Bridge” vs. “Overpass” and “Bridge” vs. “Dam”. On the
other hand, the diversity was created by collecting images of
different color, shape, and scale variations. All of these
variations make this data set a great candidate, as the data set
depicts the type of imagery the real-time object detection
architecture will process on board the UAV.

IV. METHODOLOGY
We improved the state-of-the-art DNN modeling to

achieve the following: (1) the performance of the model does
not deteriorate in terms of precision and recall (i) for overhead
imagery; (ii) when the number of objects per image is larger
than 50 (256 proposals per image); and (iii) when the objects
in the image are small (less than 10px); and (2) a lightweight
model that can fit on mobile devices such as Jetson Nano and
Jetson TX2 with limited GPU memories of 4GB and 8GB,
respectively, and system storage with a minimum of 32GB.
We addressed the challenges presented in the following order.
The overhead imagery challenge has been resolved with more
training data and an adjusted threshold [23], and we planned
to use a similar approach for 1.i.

When the number of objects per image increased, the
number of prediction tasks per image also increased. This
presented a great challenge for RPN-based methods, as the
number of regions to consider in the filtering stage increases,
and the DNN network incurs more GPU memory and a higher
number of GFLOPS (ranging from 180 to 320) in detection
[24]. RPN based architectures proved to be a showstopper due
to the model size and memory needed in the test phase.
During our experiments, Faster RCNN with ResNet 101
backbone & ResNet 50 required around 8GB of GPU memory
for 2 images per batch and 6.5GB of GPU memory from 2
images per batch, respectively, on the DIOR dataset. Also, the
model size was approximately 332MB which is larger than
most of the Single Stage Detectors.

 The mAP of the experiments ranges from 0.53 to
0.58, depending on the number of epochs. Thus, we chose the
YOLOv5 architecture as the baseline model to address the
problems of 1.ii: the small batch size (only 2 images per

batch), large model sizes, and higher GPU memory
consumption. To address the variability of the pixel size of the
objects in 1.iii, we separated the object classes in the DIOR
dataset according to the Fig. 1(a) object size distribution. If the
object size was above 200 pixels, then the object was
categorized as a large object, and if it was below 200 pixels, it
was categorized as a small object. This resulted in an evenly
separated 10 large object classes and 10 small object classes
as illustrated in Fig. 1(b).

A. YOLOv5 Baseline Architecture
The YoloV5 architecture model in Fig. 2 consists of

Backbone, Neck, and Detection Head.

1) Backbone:
The Backbone extracts global and local features from the
images. In aerial object detection, in-depth local feature
extraction is very important due to the very large number of
small objects in the images. DarkNet53 is the backbone
architecture introduced in YOLOv4 [8], [12], and continues
to be used in YOLOv5. The Darknet53 has Convolution
Layers (ConV), Cross Stage Partial Network (CSP),
Bottleneck Layers, and Faster Spatial Pyramid Pooling
Layers (SPPF). The CONV architecture has four parameters
(In channel, Output channel, Kernel Size, and Stride), and the
sigmoid linear unit (SiLU) was used as an activation function.
The partial cross stage network (CSP C3) has 2n parameters,
n for the input channel and n for the Output channel, where n
is the number of repetitions of the CSP C3 layer.

2) Neck:
Neck predicts bounding boxes using high-level deep features
from the backbone. The YOLOv5 neck is the Feature
Pyramid Network (FPN) [25]. From Fig. 2, we can see that
there are concatenations between earlier layers and the later
layers. This kind of concatenation helps the network to
preserve high-level feature information merging with low-
level deep features. The FPN block consists of four different
modules, CONV, Upsample, Concatenation, and C3 as
illustrated in Fig. 2.

3) Detection Head:
The Dectection Head is the final stage toward object
prediction that makes multi-scale predictions by dividing the
image in cell grids of sizes 8, 16, and 32. Cell size 8x8 is
tuned for small object detection while cell size 32x32 pixels
aids large object detection. The first prediction is made from
layer 17. The output of this layer is of shape [256, na(nc+5),
1,1]. Here, na & nc are the number of anchors and the number
of classes in the dataset. 5 means the object-ness score, X, Y,
W, H. Second and third scale predictions are made from the
layer 20 with 512 output channels and from layer 23 with
1024 output channels.

4) Loss Function:
Loss function in YOLO detectors need to balance positive
and negative examples fed to the detection head. Most of the
time the negative/ background examples are dominated by the
positive examples. To solve this problem, YOLOv5 uses
focal loss [19] instead of Cross Entropy (CE) loss in class
prediction. Focal Loss improves the imbalance problem by
down-weighting the easy examples and reducing the loss
from easy examples close to zero. This way it gives more
focus on the hard examples. In Fig. 4 we can see that all losses
with ground truth (GT) probability greater than 0.5 are turned
to zero. However, the blue line with = 0 represents the CE

Loss. The graph Fig. 4 shows that, when considering CE loss,
even GT Probability of 0.9 is contributing to the total loss,
thus making the loss function biased toward easy and
negative examples.

B. Implemented Improvements for YOLOv5 Architecture
1) Backbone:

The CSP is used in the backbone to reduce the size of the
images, as well as the channels. We experimented with our
data set and found that our modified CSP network can reduce
the noticeable number of GFLOPS from the network. Our
first finding is that increasing the number of repetitions n (6
& 9) respectively in the Backbone C3 layers does not help
improve the performance after 27 epochs. The loss curve for
the object class and the box object becomes flat, and the mAP
did not increase significantly. We modified the architecture
of the CSP C3 layer by down-sampling the inner convolution
operation by increasing the stride size from 1 to 2 at layer 1,
3, & 5. We also applied CNN compression by reducing the
kernel size from 3x3 to 2x2 in C3 layers because C3 (Fig. 2)
layers are concatenated with later layers in the detection head
and fpn. Therefore, the downsample will not lose significant
information due to channel-wise concatenation. Further, to
make the model more lightweight, we reduced the number of
repetitions of the CSP network from 6 to 4 (Fig. 6) and 9 to 6
(Fig. 5) at layer 4 and 6 respectively.

2) Neck:
Here in our modified architecture (Fig. 2) we have four
concatenations. The first two concatenations were done with
C3 bottleneck architecture Layers 4 and 6 from Layer 10 and
14 (Fig. 2) as we had several numbers of repetitions with rich
feature information. Then we had two concatenations at
layers 19 and 22 with Conv layers 12 and 16 (Fig. 2). Here,
the concatenations were done channel-wise, which increased
the number of channels in the object features. Also, an
increase in the number of channels would increase the
number of GFLOPS in the model. So, after each
concatenation, the C3 bottleneck was used to reduce the
number of channels with the help of a 1x1 convolution.
Therefore, the above modifications of the backbone and neck
stage led to our first version of lighter model, the “YOLOv5
lighter”.

3) Detection Head:

We reduced the number of scale predictions for the detection
head and removed the large scale prediction Fig. 2 (elements
in the red box) as our specific application focused on real-
time small object detection from UAV. This new architecture
in Fig. 3 reduced the number of GFLOPS used at the cost of
the decreased mAP for large-sized object classes. Large
object detection from satellite imagery was a solved problem,
and our focus was the light architecture for real-time traffic
and disaster monitoring systems and fast inference times.
This reduced scaled prediction version is named “Small and
mid scale” and will be referred to with this name in
subsequent sections and discussions.

4) Loss Function:
In our research we used the orbital focal loss as used in the
“YOLOv5 baseline” model. But we tackled the problem of
an unbalanced easy-hard example using a weighted over
sampler during the training. We gave more weight to small-
size object classes Fig. 1(b) such as vehicle, ship and storage-
tank, etc. to have more examples of these classes in each
batch of the dataset. This helped the model to focus more on
these classes during the training and gain better accuracy
during inference.

As our final model, we assembled all the small improvements
and applied transfer learning using a pre-trained weight from

Fig. 2. YOLOv5 backbone architecture. Layers in the red shape are
removed in the first phase of the proposed improvement

Fig. 3. Small and Medium adjustment.

Fig. 4. Loss Function Analysis[19]

a longer run (50 epochs) on the DIOR dataset. Additionally,
we stopped gradient updates from the first 6 layers of the
backbone to reduce GPU memory and power consumption
(Table 3). From Fig. 2 we saw that the first two concatenation
layers were from earlier backbone (before the 6th layer), so
we decided to freeze first 6 layers. We found that the
performance of the model did not decrease (Fig. 10) due to
the backbone freezing. We name this version of our model
“YOLOv5 freezed pretrained”.

V. RESULTS AND DISCUSSIONS
The DIOR training set contains 22,450 images and validation
set contains 1012 images. For preparing our baseline model,
we have used tph-YoloV5 [9] GitHub repository and all
experiments were conducted using the system specification
from Table 1. For the mAP calculation, YOLOv5 always
looked for the center of the object in the grid cell. If a grid cell
contained any object center, then YOLOv5 matched the
ground truth with all available anchor boxes and calculated the
width-height IOU between them. The anchor with highest
IOU was assigned to that grid cell. In this way, each grid cell
was attached to a specific anchor box which was later used to
regress the bounding box for the object. In this experiment, we
generated anchor boxes using K-means clustering on the
annotation of the training dataset. K-means clustering tries to
cluster all data points in different clusters and provide the best
possible set of anchor sizes and aspect ratios that covers most
of the data points. The resulting 3D anchor boxes for this
dataset:

 [10,13, 15,28, 34,22] for Small Objects

[30,61, 60,43, 59,122] for Medium Objects

[114,91, 159, 208, 378,322] for Large Objects

Above, each row of anchor boxes contains 3 different
anchor boxes with 3 different aspect ratios: 3 different scales
and 3 different aspect ratios of anchor boxes, totaling 9 anchor
boxes for each cell in the pooled feature matrix.

A. Performance measure analysis
We compared the five different models in terms of

Precision, Recall, mAP_0.5 and mAP_0.5:0.95 metrics. The
model was trained using the DIOR training set and we froze
the model’s gradients update after every epoch. The model
performance at every epoch was evaluated on the DIOR
validation set, as illustrated Fig. 7 to 10.

 Precision is the fraction of relevant occurrences among
recovered instances (also known as positive predictive
value). It can be defined as TP/(TP+FP). Fig. 7 shows the
overall precision of the four different models. The “YOLOv5
lighter” and “YOLOv5 freezed pretrained” models
outperformed the baseline model in terms of precision (Table
2). However, the precision dropped for the “Small and mid
scale” models because it did not perform well for the large
objects. The precision of “Small and mid scale” can be
improved by using pretrained weights shown in Fig. 7
(“Small and mid scale freezed pretrained”).

 Recall is the fraction of relevant occurrences among all

instances. It can be defined as TP/(TP+FN). Fig. 8 shows the
overall recall for the five different models. Our “YOLOv5
freezed pretrained” model outperformed the baseline model
in terms of recall Fig. 8. For the other three models, the recall
dropped by a small margin.

mAP_0.5 is a metric that indicates the average precision
(AP) where Intersection Over Union (IOU) is greater than

System Configuration
Operating System Ubuntu 18.04

CPU 11th Gen Intel® Core™ i9-11900K @
3.50GHz × 16

GPU NVIDIA Corporation GP102 [TITAN
Xp]

GPU Memory 12GB
RAM 125GB

Fig. 6. Small Scale CSP C3 architecture with Backbone Truncate Fig. 5. Medium Scale CSP C3 architecture with Backbone Truncate

Table 1. System Specifications

50%. Fig. 9 shows the comparison mAP_0.5 among the five
different models. Here, the `YOLOv5 freezed pretrained
outperformed the baseline model (Table 2). The mAP_0.5
dropped by a small margin for the lighter YOLOv5 model.
However, the “Small and mid-scale” and “Small and mid-
scale freezed pretrained” models did not perform well in
terms of mAP_0.5.

Model
name

Precisi
on

Recall mAP_0.
5

mAP_0
.5:0.95

Inferen
ce Time

(ms)
YOLO

v5(Baseline
)

0.8731 0.8098 0.8662 0.6381 76.2

Small and
mid-scale 0.7966 0.7857 0.8188 0.5649 68.21

YOLOv5
lighter 0.8740 0.8041 0.8651 0.6310 69.6

YOLOv5
freezed

pretrained
0.8792 0.8118 0.8706 0.6386 70.3

Small and
mid-scale
freezed

pretrained

0.8274 0.7911 0.8403 0.5871 69.13

 mAP_0.5:0.95 metric indicates the AP for IOU from 0.5
to 0.95 with a step size of 0.05. Fig. 10 shows the
mAP_0.5:0.95 for the five different models. We were able to
maintain quite similar mAP_0.5:0.95 as the baseline model

for the “YOLOv5 lighter” and “YOLOv5 freezed pretrained”
models (Fig. 10). However, the mAP_0.5:0.95 dropped for
the “Small and mid-scale” and “Small and mid-scale freezed
pretrained” models because of their poor performance on
large object classes.

Table 3 shows inference time for proposed models
matches most of the real time state-of-art object detectors.
Reducing the GFLOPS and repetitions in C3 module (Fig. 5,
6) decreases inference time in the YOLOv5 lighter model by
7ms. Reducing. Among them the “Small and mid-scale”
model is the fastest model with 68.21ms of inference time per
frame (Table 3). Lower inference time leads to faster
detection in real time, which is the key to mission critical
applications.

B. Power Efficiency Analysis
We used a physical device P4400 p3 Kill A Watt meter to

measure the power consumption of models, as shown in Fig.
11. Using this device, we measured the power consumption
of the CPU line. We conducted all the experiments for power
efficiency analysis with a similar setup. First, the
performance of the “YOLOv5 baseline” model was very
satisfactory (Table 2 & 3). It achieved a mAP of 63.81% and
recalled around 81%. The number of learnable parameters,
GFLPOS, GPU Memory Consumption and Power
Consumption were 46240609, 108.3 GFLOPs, 3.83 GB, and
384 Watt, respectively.

Fig. 7. Precision wrt # Epochs for different models

Fig. 9. mAP 0.5 wrt # Epochs for different models

Table 2 Performance Summary

Fig. 8. Recall wrt # Epochs for different models

Fig. 10. mAP 0.5:0.95 wrt # Epochs for different models

Second, for the “Small and mid-scale” model, we

removed the large-scale prediction from the detection
network (Fig. 3). In this way, we were able to lower the power
consumption by 10 watts (Table 3). Also, we reduced 10
GFLPOs. This model used 3.48GB of GPU memory, which
was 0.35 GB lower than the baseline model. Furthermore, we
were able to reduce the number of learnable parameters to
33,831,702. This model performed better than the baseline
model in terms of load reduction and power consumption.

Third, for our “YOLOv5 lighter” model, the number of
learnable parameters, GFLPOS, GPU Memory Consumption,
and Power Consumption were 43942753, 97.7 GFLOPs, 3.63
GB, and 380 Watt, respectively. We were able to lower the
number of learnable parameters, GLOPS by 10.6, GPU
memory usage by 0.20 GB, and power consumption by 4
watts. Moreover, this model achieved state-of-the-art
accuracy.

Fourth, in our “YOLOv5 freezed pretrained” model, we

used the configuration from the “YOLOv5 lighter” model and
then used Transfer Learning and Layer freeze method to
reduce the GPU usage further. We used one of our pre-trained
models and reused the weights from the model. Then we
froze the first 6 layers of the backbone network. This

experiment gave us the best overall result in terms of GPU
memory usage as well as performance metrics. We were able
to reduce GPU memory usage by 1.29 GB. The number of
learnable parameters, GFLPOS, GPU Memory Consumption
and Power Consumption for this model were 43942753, 97.7,
2.54GB and 377 Watt, respectively. This model used 7 watts
less power and had 10.6 less GFLOPs than the baseline
model. Finally, applying Transfer Learning and Layer freeze
method on the “Small and mid scale” model, we further
reduced the GPU memory usage and power consumption.
Our “Small and mid-scale freezed pretrained” model used 12
watts less power, 1.41 GB less GPU memory and had 10
GFLOPS less than the baseline model.

In summary, our “YOLOv5 freezed pretrained” and
“YOLOv5 lighter” models use less power and GPU memory
and achieve the state-of-the-art accuracy. Therefore, these
two models are suitable for real-time object detection in
resource-constrained edge devices. Moreover, the “Small and
mid-scale” and “Small and mid-scale freezed pretrained”
models are suitable for application specific tasks for small
object detection such as traffic monitoring. From Table 3, we
can see that our best model, the “YOLOv5 freezed
pretrained” model, takes a small amount of GPU memory
(2.54 GB) with an mAP of 63.86 (see Fig. 10) on the DIOR
dataset, which is slightly better than the YOLOv5 baseline
model produces (see Table 2).

VI. CONCLUSION
DNN architectures for the real-time object detection from

overhead imagery are hard to scale to edge and mobile
processing devices due to rapid deterioration in their
performance when the number of objects in the image is large,
the image itself is large, and the sizes of objects vary. Even the
best models do not perform well with this dataset. We have
proposed a lighter model, which takes advantage of the
assumptions in the DNN architecture that are not applicable
for the overhead imagery. Our proposed model meets full-
model mAP and consumes 34% less power and GPU memory.

ACKNOWLEDGMENT
 This work is partially supported by the NAVAIR SBIR
N68335-18-C-0199 and NSF grant CNS-1908658. The views,
opinions, and/or findings contained in this article are those of
the authors and should not be interpreted as representing the
official views or policies of the Department of Defense,
National Science Foundation, or the U.S. Government paper
references. The Titan Xp used for this research was donated
by the NVIDIA Corporation.

REFERENCES

[1] J. W. Yun, “Deep Residual Learning for Image Recognition
arXiv:1512.03385v1,” Enzyme and Microbial Technology, vol. 19, no.
2, pp. 107–117, 1996, [Online]. Available: http://image-
net.org/challenges/LSVRC/2015/

[2] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
Apr. 2018, [Online]. Available: http://arxiv.org/abs/1804.02767

[3] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” Apr. 2017, [Online].
Available: http://arxiv.org/abs/1704.04861

[4] K. Li, G. Wan, G. Cheng, L. Meng, and J. Han, “Object detection in
optical remote sensing images: A survey and a new benchmark,”

Model name GFLOP
s

Power(wat
t)

Number
of

parameter
s

GPU
memory
Usage(G

B)

YOLOv5
Baseline 108.3 384 46,240,609 3.83

YOLOv5
lighter 97.7 380 43,942,753 3.63

Small and mid-
scale 98.3 374 33,831,702 3.48

YOLOv5freeze
d pretrained 97.7 377 43,942,753 2.54

Small and mid-
scale freezed
pretrained

98.3 372 43,942,753 2.42

Table 3 Analysis of power efficiency

Fig. 11. P4400 p3 Kill-A-Watt meter for measuring power
usage of each model during training.

ISPRS Journal of Photogrammetry and Remote Sensing, vol. 159, pp.
296–307, Jan. 2020, doi: 10.1016/j.isprsjprs.2019.11.023.

[5] J. Ding et al., “Object Detection in Aerial Images: A Large-Scale
Benchmark and Challenges,” Feb. 2021, doi:
10.1109/TPAMI.2021.3117983.

[6] P. Ganesh, Y. Chen, Y. Yang, D. Chen, and M. Winslett, “YOLO-ReT:
Towards High Accuracy Real-time Object Detection on Edge GPUs.”

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation.”
[Online]. Available: http://arxiv.

[8] S. Ali, A. Siddique, H. F. Ates, and B. K. Gunturk, “Improved
YOLOv4 for aerial object detection,” Jun. 2021. doi:
10.1109/SIU53274.2021.9478027.

[9] X. Zhu, S. Lyu, X. Wang, and Q. Zhao, “TPH-YOLOv5: Improved
YOLOv5 Based on Transformer Prediction Head for Object Detection
on Drone-captured Scenarios.”

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks.” [Online].
Available: https://github.com/

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” Jun. 2015, [Online].
Available: http://arxiv.org/abs/1506.02640

[12] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal
Speed and Accuracy of Object Detection,” Apr. 2020, [Online].
Available: http://arxiv.org/abs/2004.10934

[13] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger.”
[Online]. Available: http://pjreddie.com/yolo9000/

[14] W. Liu et al., “SSD: Single Shot MultiBox Detector,” Dec. 2015, doi:
10.1007/978-3-319-46448-0_2.

[15] D. Yi, J. Su, and W. H. Chen, “Probabilistic faster R-CNN with
stochastic region proposing: Towards object detection and recognition
in remote sensing imagery,” Neurocomputing, vol. 459, pp. 290–301,
Oct. 2021, doi: 10.1016/j.neucom.2021.06.072.

[16] B. M. Albaba and S. Ozer, “Synet: An ensemble network for object
detection in UAV images,” in Proceedings - International Conference
on Pattern Recognition, 2020, pp. 10227–10234. doi:
10.1109/ICPR48806.2021.9412847.

[17] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “CenterNet:
Keypoint Triplets for Object Detection.” [Online]. Available:
https://github.com/

[18] Y. Li and F. Ren, “Light-Weight RetinaNet for Object Detection,” May
2019, [Online]. Available: http://arxiv.org/abs/1905.10011

[19] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for
Dense Object Detection.”

[20] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size,” Feb. 2016, [Online]. Available:
http://arxiv.org/abs/1602.07360

[21] L. Li, S. Zhang, and J. Wu, “Efficient object detection framework and
hardware architecture for remote sensing images,” Remote Sensing,
vol. 11, no. 20, Oct. 2019, doi: 10.3390/rs11202376.

[22] P. Graff, F. Feroz, M. P. Hobson, and A. Lasenby, “SKYNET: An
efficient and robust neural network training tool for machine learning
in astronomy,” Monthly Notices of the Royal Astronomical Society,
vol. 441, no. 2, pp. 1741–1759, 2014, doi: 10.1093/mnras/stu642.

[23] N. Warren, B. Garrard, E. Staudt, and J. Tesic, “Transfer learning of
deep neural networks for visual collaborative maritime asset
identification,” in Proceedings - 4th IEEE International Conference on
Collaboration and Internet Computing, CIC 2018, Nov. 2018, pp. 246–
255. doi: 10.1109/CIC.2018.00041.

[24] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S.
Zagoruyko, “End-to-End Object Detection with Transformers,” May
2020, [Online]. Available: http://arxiv.org/abs/2005.12872

[25] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature Pyramid Networks for Object Detection.” Writer’s
Handbook. Mill Valley, CA: University Science, 1989.

	I. Introduction
	II. Related work
	III. dataset
	IV. Methodology
	A. YOLOv5 Baseline Architecture
	1) Backbone:
	2) Neck:
	3) Detection Head:
	4) Loss Function:

	B. Implemented Improvements for YOLOv5 Architecture
	1) Backbone:
	2) Neck:
	3) Detection Head:
	4) Loss Function:

	V. Results and discussions
	A. Performance measure analysis
	B. Power Efficiency Analysis

	VI. conclusion
	Acknowledgment
	References

