
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Improving the Energy Efficiency of Real-time DNN 
Object Detection via Compression, Transfer 

Learning, and Scale Prediction 

Debojyoti Biswas  
Dept. of Computer Science 

Texas State University 
San Marcos, TX, US 

M M Mahabubur Rahman 
Dept. of Computer Science 

Texas State University 
San Marcos, TX, US 

Ziliang Zong 
Dept. of Computer Science 

Texas State University 
San Marcos, TX, US 

Jelena Tešić 
Dept. of Computer Science 

Texas State University 
San Marcos, TX, US

Abstract— In recent years, computational accessibility has 
enabled the use of Deep Neural Network (DNN) for computer 
vision applications on devices with limited computational 
resources. We focus on the real-time object detection algorithms 
deployed on UAV-friendly devices. The hardware deployed on 
UAV must be lightweight and thus limited in processing power, 
memory, and storage capacity. Lightweight modeling 
architecture does not suffice for high-recall reconnaissance 
applications. In this paper, we propose to reduce power 
consumption of YOLOv5 DNN architecture. We decided to use 
compressed convolutional technique, transfer learning, 
backbone shrinkage, and scale prediction to reduce the number 
of learnable parameters from the YOLOv5model. Our 
approach reduced the size of the model significantly and 
lowered the power consumption in turn. GPU memory and the 
Billion Floating-Point Operations Per Second (GFLOPS) for the 
YOLOv5model will keep the performance measure of the model 
as the baseline state-of-the-art. The best resulting model has a 
63.86% mean average precision (mAP) and a GFLOPS of 97.7 
on “DIOR”, an overhead imagery data set. The proposed 
approach has lowered GPU memory consumption of the model 
by 34% and lowered the energy consumption by 10 Watts 
compared to the baseline model. 
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I. INTRODUCTION  
Overhead video sensors capture data at a rate far higher 

than current human-in-loop can effectively monitor and 
analyze.  Real-time detection in overhead videos significantly 
reduces the volume of video data that needs to be transmitted 
and evaluated by humans on the ground for a range of 
applications: traffic management and control on land and sea, 
disaster control (floods, fires, earthquakes), surveillance and 
recovery missions in the mountains or at sea, wild-life 
migration patterns, object localization and detection, etc. 
Large video stream transmissions from drones and satellites to 
Earth-bound computing hardware pose a burden for the 
wireless communication channels and introduce latency. It 
takes considerable time and attention for a human-in-loop to 
evaluate and validate the intelligence gathering in video 
streams. Mission-critical real-time applications, such as fire-
rescue operation and traffic monitoring systems, do not 
tolerate latency.  

 The solution is to deploy state-of-the-art deep neural 
network (DNN) real-time object detection algorithms on edge 
and mobile devices. The Convolutional Neural Network 
(CNN) architectures are used as a backbone in complex DNN 
architectures for reliable feature extraction, e.g., ResNet101 
[1], Darknet [2], and MobileNets [3]. DNN architectures with 
CNN backbones are the most successful for computer vision 
tasks because of their nature of preserving information from 
images. Overhead cameras typically capture large images at 
high resolution; for example, the image dimension in the 

DIOR [4], DOTA2.0 [5] data set is 20,000 pixels by 20,000 
pixels. The large size of the images increases the number of 
learnable parameters and the amount of computational 
complexity in the DNN pipeline. Recent research has 
proposed lighter models that use less computational power 
and have been deployed on edge computing devices [6], [7]. 
Large high-resolution images contain a lot of objects. The size 
of the objects is much smaller than the size of the image, and 
the number of local features is also small, making the 
overhead object detection notoriously difficult; therefore, the 
performance of Retina-Net or YOLO-ReT models 
significantly degrades. This problem can be solved with a light 
model with less computational power and energy that can (1) 
fit on edge devices; and (2) detect small objects with the same 
effectiveness level as a full DNN model. 

We selected YOLOv5 [24] as a baseline architecture due 
to its ability to detect small objects in large images [8], [9]. 
We used the bottleneck convolution architecture to consume 
less energy than the original version and employed 
compressed convolutional technique and backbone shrinkage 
to make large CNN blocks smaller. Thus, we reduced the 
number of matrix operations, which in turn reduced the 
number of GFLOPS and made the model smaller and more 
energy efficient. Moreover, we utilized contextual 
information on the size distribution of the objects (Fig. 1) to 
make a scale prediction where object size was below 200px. 
We designed the transfer, learning and freezing the partial 
network approach to prevent model degradation and achieve 
up to 34% reduction in GPU memory and power consumption. 
The remainder of the paper is organized as follows: Section II 
contains related work, Section III discusses the data set, 
Section IV is the methodology, Section V includes the results 
and discussions, and Section VI concludes the findings. 

II. RELATED WORK 
The DNN architectures for the object detection approaches 

originate from the two schools: Region Proposal Network 
(RPN) [10] and You Only Look Once (YOLO) [11]. RPN-
reliant DNN architectures rely on CNN backbones to extract 
deep features from input images, e.g. [7]. Next, a small DNN, 
the Region Proposal Network (RPN), generates and filters 
object regions and feeds them into the detection network 
layers [12]. RPN-based architectures require more 
computational power due to the sequential processing of 
features, regions, and classes.  

YOLO-based detectors parallelize the process and 
consider object detection as a regression task with respect to 
spatially separated bounding boxes associated with class 
probabilities [2]. YOLO9000 predicts the coordinates of the 
bounding boxes, directly using fully connected layers on top 
of the convolutional feature extractor [13]. YOLOv3 adds 
multiple convolutional layers to generate multiscale feature 



maps and predicts boundary boxes using dimension clusters 
[1]. The incremental improvement of YOLOv3 is YOLOv4, 
which adds a couple of new features such as Weighted-
Residual-Connections (WRC), Cross-Stage-Partial-
Connections (CSP), and Self-adversarial-training (SAT). All 
these new architectures help the YOLOv4 to gain the state-of-
art result in large scale datasets. The latest YOLOv5 adds 
more bags-of-tricks, and, with the addition of Faster Spatial 
Pyramid Pooling (SPPF), increases respective fields in the 
backbone features with almost no overhead in the detection 
operation speed. The TPH-YOLOv5 modifies YOLOv5 using 
the transformer prediction head to obtain a diverse range of 
features from the CNN input image and the attention 
mechanism for feature extraction [9]. SSD uses low-level 
convolutional feature maps from high-resolution images to 
detect small objects [14].  All these models are 100MB+ in 
size and range from 100MB to 372MB depending on the 
complexity of the networks. The models also require high-
memory GPU workstations. The GPU memory requirement 
for most of these models is 8GB when trained with aerial 
images [8]with a batch size of 2 and the required RAM is 
32GB. 

Overhead large high-resolution images contain a lot of 
objects. The size of the objects is much smaller than the size 
of the image, and the number of local features is small. The 
stochastic region proposal attempted to address these 
shortcomings without reducing the size of the model. The 
stochastic method [15]proposes regions using the probabilistic 
goodness score of each region based on the size, shape, and 
recognition score of each object. Furthermore, Berat et al. 
proposed SyNet [16]which combines the features of signal 
stage and multistage detectors. The goal of combining two 
different types of models is to decrease the high false-negative 
rate from the multistage detector and increase the region 
proposal quality from the single stage detectors. This network 
is considered a popular aerial/overhead image dataset called 
“Visdrone” for model evaluation. For the baseline set, 
CenterNet and Mask RCNN are used in “SyNet”. 

Researchers have reduced the size of the DNN models for 
object detection tasks. Region Proposal Networks (RPN) in 
traditional two-stage detectors become increasingly 
computationally expensive for overhead imagery. As the 

number of small objects and potential region candidates rises, 
the number of Non-Max Suppression (NMS) operations 
exponentially increases. The Center-Net [17] is based on the 
key points in the image, and the center of each object in the 
ground truth is considered as a key point. Model size and 
inference savings come from the CenterNet use of the 
heatmap for region proposal,,not RPN.   

 Researchers have lessened the GPU memory and 
power consumption by reducing the load of the heaviest layer 
in the DNN architectures. The lightweight version of 
RetinaNet [18]was able to reduce noticeable numbers of 
learnable parameters and GFLOPS as compared to the 
RetinaNet [19]. RetinaNet uses FPN for different scales of 
features from the input images followed by different shapes 
and aspect ratios of anchor boxes to create regions of interest. 
The anchor boxes are placed on each cell of the FPN output 
features and IOU is calculated with the ground-truth for 
prediction. The reduction analysis in this work [18] is based 
on GFLOPS and compares the performance of different 
models on the MSCOCO dataset in terms of mAP and 
GFLOPS, without mentioning the power consumption metrics 
and the memory usage.  

CNN compression is one of the most prominent 
techniques for DNN model size reduction. Up to 87% of the 
operations in DNNs are convolution operations. Reducing the 
convolution operations from the network can reduce the 
number of learnable parameters as well as the GFLOPS. One 
of the first works towards CNN compression is 
SQUEEZENET [20]. The idea behind CNN compression is 
that a smaller filter size would require a smaller number of 
convolution operations as well as matrix storage space in the 
GPU. SQUEEZENET uses different approaches for CNN 
compression, such as reducing the filter size from 3x3 to 1x1, 
dropping the input channel size to 3x3, and downsampling the 
latter part of the network for a smaller number of activation 
functions. MobileNets achieves CNN compression by using 
model shrinking parameters, reduced input size, and transfer 
learning to build a smaller model [3]. This work [21] uses 
Parallel architecture, multi-GPU parallel processing, 
hierarchical on-chip storage organization, and the efficient 
application specific hardware designed to achieve efficient 
object detection. SKYNET is another hardware-efficient 

Fig.1. DIOR dataset analysis: (a) number of class instances and (b) object pixel size distribution in an image dataset. 



neural network designed to deliver state-of-the-art detection 
accuracy and speed for embedded systems [22]. SKYNET 
provides a novel bottom-up DNN design approach taking 
hardware constraints into account. 

III. DATASET 
The DIOR [4] overhead imagery dataset was released 

recently to address the lack of diversity in the properties of the 
image features in existing benchmarks. The dataset consists of 
23,463 Google Earth images and 192,472 object instances. 
The size of the images in the dataset is 800 × 800 pixels, and 
the spatial resolutions range from 0.5 to 30 m. The objects are 
manually localized and classified into 20 classes of objects, as 
illustrated in Fig. 1(a). The DIOR dataset is specific in the 
following: (i) heterogeneous object categories, large 
variations of the pixel size of objects per category, and large 
variations of the number of instances per category, as 
illustrated in Fig. 1(a) ; (ii) large number of spatial resolutions 
and of inter- and intraclass size variability across objects that 
comes from the different orientations of the objects from the 
overhead view; (iii) large content variability over 
geographical area (80 countries), including weather 
conditions, seasons, and image quality; and (iv) high interclass 
similarity and intra-class diversity. The interclass similarity 
also arises by adding new classes in the dataset, such as 
“Bridge” vs. “Overpass” and “Bridge” vs. “Dam”. On the 
other hand, the diversity was created by collecting images of 
different color, shape, and scale variations.  All of these 
variations make this data set a great candidate, as the data set 
depicts the type of imagery the real-time object detection 
architecture will process on board the UAV. 

IV. METHODOLOGY 
We improved the state-of-the-art DNN modeling to 

achieve the following: (1) the performance of the model does 
not deteriorate in terms of precision and recall (i) for overhead 
imagery; (ii) when the number of objects per image is larger 
than 50 (256 proposals per image); and (iii) when the objects 
in the image are small (less than 10px); and (2) a lightweight 
model that can fit on mobile devices such as Jetson Nano and 
Jetson TX2 with limited GPU memories of 4GB and 8GB, 
respectively, and system storage with a minimum of 32GB. 
We addressed the challenges presented in the following order. 
The overhead imagery challenge has been resolved with more 
training data and an adjusted threshold [23], and we planned 
to use a similar approach for 1.i.  

When the number of objects per image increased, the 
number of prediction tasks per image also increased. This 
presented a great challenge for RPN-based methods, as the 
number of regions to consider in the filtering stage increases, 
and the DNN network incurs more GPU memory and a higher 
number of GFLOPS (ranging from 180 to 320) in detection 
[24]. RPN based architectures proved to be a showstopper due 
to the model size and memory needed in the test phase.  
During our experiments, Faster RCNN with ResNet 101 
backbone & ResNet 50 required around 8GB of GPU memory 
for 2 images per batch and 6.5GB of GPU memory from 2 
images per batch, respectively, on the DIOR dataset. Also, the 
model size was approximately 332MB which is larger than 
most of the Single Stage Detectors.  

 The mAP of the experiments ranges from 0.53 to 
0.58, depending on the number of epochs. Thus, we chose the 
YOLOv5 architecture as the baseline model to address the 
problems of 1.ii: the small batch size (only 2 images per 

batch), large model sizes, and higher GPU memory 
consumption. To address the variability of the pixel size of the 
objects in 1.iii, we separated the object classes in the DIOR 
dataset according to the Fig. 1(a) object size distribution. If the 
object size was above 200 pixels, then the object was 
categorized as a large object, and if it was below 200 pixels, it 
was categorized as a small object. This resulted in an evenly 
separated 10 large object classes and 10 small object classes 
as illustrated in Fig. 1(b). 

A. YOLOv5 Baseline Architecture 
The YoloV5 architecture model in Fig. 2 consists of 

Backbone, Neck, and Detection Head. 

1) Backbone: 
The Backbone extracts global and local features from the 
images. In aerial object detection, in-depth local feature 
extraction is very important due to the very large number of 
small objects in the images. DarkNet53 is the backbone 
architecture introduced in YOLOv4 [8], [12], and continues 
to be used in YOLOv5. The Darknet53 has Convolution 
Layers (ConV), Cross Stage Partial Network (CSP), 
Bottleneck Layers, and Faster Spatial Pyramid Pooling 
Layers (SPPF).  The CONV architecture has four parameters 
(In channel, Output channel, Kernel Size, and Stride), and the 
sigmoid linear unit (SiLU) was used as an activation function.  
The partial cross stage network (CSP C3) has 2n parameters, 
n for the input channel and n for the Output channel, where n 
is the number of repetitions of the CSP C3 layer. 

2) Neck: 
Neck predicts bounding boxes using high-level deep features 
from the backbone. The YOLOv5 neck is the Feature 
Pyramid Network (FPN) [25]. From Fig. 2, we can see that 
there are concatenations between earlier layers and the later 
layers. This kind of concatenation helps the network to 
preserve high-level feature information merging with low-
level deep features. The FPN block consists of four different 
modules, CONV, Upsample, Concatenation, and C3 as 
illustrated in Fig. 2. 

3) Detection Head: 
The Dectection Head is the final stage toward object 
prediction that makes multi-scale predictions by dividing the 
image in cell grids of sizes 8, 16, and 32.  Cell size 8x8 is 
tuned for small object detection while cell size 32x32 pixels 
aids large object detection. The first prediction is made from 
layer 17. The output of this layer is of shape [256, na(nc+5), 
1,1]. Here, na & nc are the number of anchors and the number 
of classes in the dataset. 5 means the object-ness score, X, Y, 
W, H.  Second and third scale predictions are made from the 
layer 20 with 512 output channels and from layer 23 with 
1024 output channels. 

4) Loss Function: 
Loss function in YOLO detectors need to balance positive 
and negative examples fed to the detection head. Most of the 
time the negative/ background examples are dominated by the 
positive examples. To solve this problem, YOLOv5 uses 
focal loss [19] instead of Cross Entropy (CE) loss in class 
prediction. Focal Loss improves the imbalance problem by 
down-weighting the easy examples and reducing the loss 
from easy examples close to zero. This way it gives more 
focus on the hard examples. In Fig. 4 we can see that all losses 
with ground truth (GT) probability greater than 0.5 are turned 
to zero. However, the blue line with = 0 represents the CE 



Loss. The graph Fig. 4 shows that, when considering CE loss, 
even GT Probability of 0.9 is contributing to the total loss, 
thus making the loss function biased toward easy and 
negative examples. 

B. Implemented Improvements for YOLOv5 Architecture 
1) Backbone: 

The CSP is used in the backbone to reduce the size of the 
images, as well as the channels. We experimented with our 
data set and found that our modified CSP network can reduce 
the noticeable number of GFLOPS from the network. Our 
first finding is that increasing the number of repetitions n (6 
& 9) respectively in the Backbone C3 layers does not help 
improve the performance after 27 epochs. The loss curve for 
the object class and the box object becomes  flat, and the mAP 
did not increase significantly. We modified the architecture 
of the CSP C3 layer by down-sampling the inner convolution 
operation by increasing the stride size from 1 to 2 at layer 1, 
3, & 5. We also applied CNN compression by reducing the 
kernel size from 3x3 to 2x2 in C3 layers because C3 (Fig. 2) 
layers are concatenated with later layers in the detection head 
and fpn. Therefore, the downsample will not lose significant 
information due to channel-wise concatenation. Further, to 
make the model more lightweight, we reduced the number of 
repetitions of the CSP network from 6 to 4 (Fig. 6) and 9 to 6 
(Fig. 5) at layer 4 and 6 respectively.  

2) Neck: 
Here in our modified architecture (Fig. 2) we have four 
concatenations. The first two concatenations were done with 
C3 bottleneck architecture Layers 4 and 6 from Layer 10 and 
14 (Fig. 2) as we had several numbers of repetitions with rich 
feature information. Then we had two concatenations at 
layers 19 and 22 with Conv layers 12 and 16 (Fig. 2). Here, 
the concatenations were done channel-wise, which increased 
the number of channels in the object features. Also, an 
increase in the number of channels would increase the 
number of GFLOPS in the model. So, after each 
concatenation, the C3 bottleneck was used to reduce the 
number of channels with the help of a 1x1 convolution. 
Therefore, the above modifications of the backbone and neck 
stage led to our first version of lighter model, the “YOLOv5 
lighter”. 

 
3) Detection Head: 

We reduced the number of scale predictions for the detection 
head and removed the large scale prediction Fig. 2 (elements 
in the red box) as our specific application focused on real-
time small object detection from UAV. This new architecture 
in Fig. 3 reduced the number of GFLOPS used at the cost of 
the decreased mAP for large-sized object classes. Large 
object detection from satellite imagery was a solved problem, 
and our focus was the light architecture for real-time traffic 
and disaster monitoring systems and fast inference times. 
This reduced scaled prediction version is named “Small and 
mid scale” and will be referred to with this name in 
subsequent sections and discussions. 

4) Loss Function: 
In our research we used the orbital focal loss as used in the 
“YOLOv5 baseline” model. But we tackled the problem of 
an unbalanced easy-hard example using a weighted over 
sampler during the training. We gave more weight to small-
size object classes Fig. 1(b) such as vehicle, ship and storage-
tank, etc. to have more examples of these classes in each 
batch of the dataset. This helped the model to focus more on 
these classes during the training and gain better accuracy 
during inference. 
 
As our final model, we assembled all the small improvements 
and applied transfer learning using a pre-trained weight from 

Fig. 2. YOLOv5 backbone architecture. Layers in the red shape are 
removed in the first phase of the proposed improvement 

Fig. 3. Small and Medium adjustment. 

Fig. 4. Loss Function Analysis[19] 

 



a longer run (50 epochs) on the DIOR dataset. Additionally, 
we stopped gradient updates from the first 6 layers of the 
backbone to reduce GPU memory and power consumption 
(Table 3). From Fig. 2 we saw that the first two concatenation 
layers were from earlier backbone (before the 6th layer), so 
we decided to freeze first 6 layers. We found that the 
performance of the model did not decrease (Fig. 10) due to 
the backbone freezing. We name this version of our model 
“YOLOv5 freezed pretrained”. 

V. RESULTS AND DISCUSSIONS 
The DIOR training set contains 22,450 images and validation 
set contains 1012 images. For preparing our baseline model, 
we have used tph-YoloV5 [9] GitHub repository and all 
experiments were conducted using the system specification 
from Table 1. For the mAP calculation, YOLOv5 always 
looked for the center of the object in the grid cell. If a grid cell 
contained any object center, then YOLOv5 matched the 
ground truth with all available anchor boxes and calculated the 
width-height IOU between them. The anchor with highest 
IOU was assigned to that grid cell. In this way, each grid cell 
was attached to a specific anchor box which was later used to 
regress the bounding box for the object. In this experiment, we 
generated anchor boxes using K-means clustering on the 
annotation of the training dataset. K-means clustering tries to 
cluster all data points in different clusters and provide the best 
possible set of anchor sizes and aspect ratios that covers most 
of the data points. The resulting 3D anchor boxes for this 
dataset:  

 [10,13, 15,28, 34,22] for Small Objects 

[30,61, 60,43, 59,122] for Medium Objects 

[114,91, 159, 208, 378,322] for Large Objects   

Above, each row of anchor boxes contains 3 different 
anchor boxes with 3 different aspect ratios: 3 different scales 
and 3 different aspect ratios of anchor boxes, totaling 9 anchor 
boxes for each cell in the pooled feature matrix. 

A. Performance measure analysis 
We compared the five different models in terms of 

Precision, Recall, mAP_0.5 and mAP_0.5:0.95 metrics. The 
model was trained using the DIOR training set and we froze 
the model’s gradients update after every epoch. The model 
performance at every epoch was evaluated on the DIOR 
validation set, as illustrated Fig. 7 to 10.  
 

 Precision is the fraction of relevant occurrences among 
recovered instances (also known as positive predictive 
value). It can be defined as TP/(TP+FP). Fig. 7 shows the 
overall precision of the four different models. The “YOLOv5 
lighter” and “YOLOv5 freezed pretrained” models 
outperformed the baseline model in terms of precision (Table 
2). However, the precision dropped for the “Small and mid 
scale” models because it did not perform well for the large 
objects. The precision of “Small and mid scale” can be 
improved by using pretrained weights shown in Fig. 7 
(“Small and mid scale freezed pretrained”). 

 
 Recall is the fraction of relevant occurrences among all 

instances. It can be defined as TP/(TP+FN). Fig. 8 shows the 
overall recall for the five different models. Our “YOLOv5 
freezed pretrained” model outperformed the baseline model 
in terms of recall Fig. 8. For the other three models, the recall 
dropped by a small margin. 
 

mAP_0.5 is a metric that indicates the average precision 
(AP) where Intersection Over Union (IOU) is greater than 

System Configuration 
Operating System Ubuntu 18.04 

CPU 11th Gen Intel® Core™ i9-11900K @ 
3.50GHz × 16 

GPU NVIDIA Corporation GP102 [TITAN 
Xp] 

GPU Memory 12GB 
RAM 125GB 

Fig. 6. Small Scale CSP C3 architecture with Backbone Truncate Fig. 5. Medium Scale CSP C3 architecture with Backbone Truncate 

Table 1. System Specifications 



50%. Fig. 9 shows the comparison mAP_0.5 among the five 
different models. Here, the `YOLOv5 freezed pretrained 
outperformed the baseline model (Table 2). The mAP_0.5 
dropped by a small margin for the lighter YOLOv5 model. 
However, the “Small and mid-scale” and “Small and mid-
scale freezed pretrained” models did not perform well in 
terms of mAP_0.5. 

 
Model 
name 

Precisi
on 

Recall mAP_0.
5 

mAP_0
.5:0.95 

Inferen
ce Time 

(ms) 
YOLO 

v5(Baseline
) 

0.8731 0.8098 0.8662 0.6381 76.2 

Small and 
mid-scale 0.7966 0.7857 0.8188 0.5649 68.21 

YOLOv5 
lighter 0.8740 0.8041 0.8651 0.6310 69.6 

YOLOv5 
freezed 

pretrained 
0.8792 0.8118 0.8706 0.6386 70.3 

Small and 
mid-scale 
freezed 

pretrained 

0.8274 0.7911 0.8403 0.5871 69.13 

 
      mAP_0.5:0.95 metric indicates the AP for IOU from 0.5 
to 0.95 with a step size of 0.05. Fig. 10 shows the 
mAP_0.5:0.95 for the five different models. We were able to 
maintain quite similar mAP_0.5:0.95 as the baseline model 

for the “YOLOv5 lighter” and “YOLOv5 freezed pretrained” 
models (Fig. 10). However, the mAP_0.5:0.95 dropped for 
the “Small and mid-scale” and “Small and mid-scale freezed 
pretrained” models because of their poor performance on 
large object classes. 
 

Table 3 shows inference time for proposed models 
matches most of the real time state-of-art object detectors. 
Reducing the GFLOPS and repetitions in C3 module (Fig. 5, 
6) decreases inference time in the YOLOv5 lighter model by 
7ms. Reducing. Among them the “Small and mid-scale” 
model is the fastest model with 68.21ms of inference time per 
frame (Table 3). Lower inference time leads to faster 
detection in real time, which is the key to mission critical 
applications. 

B. Power Efficiency Analysis 
We used a physical device P4400 p3 Kill A Watt meter to 

measure the power consumption of models, as shown in Fig. 
11. Using this device, we measured the power consumption 
of the CPU line. We conducted all the experiments for power 
efficiency analysis with a similar setup. First, the 
performance of the “YOLOv5 baseline” model was very 
satisfactory (Table 2 & 3). It achieved a mAP of 63.81% and 
recalled around 81%. The number of learnable parameters, 
GFLPOS, GPU Memory Consumption and Power 
Consumption were 46240609, 108.3 GFLOPs, 3.83 GB, and 
384 Watt, respectively.  
 

Fig. 7. Precision wrt # Epochs for different models 

Fig. 9. mAP 0.5 wrt # Epochs for different models 

Table 2 Performance Summary 

Fig. 8. Recall wrt # Epochs for different models 

Fig. 10. mAP 0.5:0.95 wrt # Epochs for different models 



 
Second, for the “Small and mid-scale” model, we 

removed the large-scale prediction from the detection 
network (Fig. 3). In this way, we were able to lower the power 
consumption by 10 watts (Table 3). Also, we reduced 10 
GFLPOs. This model used 3.48GB of GPU memory, which 
was 0.35 GB lower than the baseline model. Furthermore, we 
were able to reduce the number of learnable parameters to 
33,831,702. This model performed better than the baseline 
model in terms of load reduction and power consumption. 
 

Third, for our “YOLOv5 lighter” model, the number of 
learnable parameters, GFLPOS, GPU Memory Consumption, 
and Power Consumption were 43942753, 97.7 GFLOPs, 3.63 
GB, and 380 Watt, respectively. We were able to lower the 
number of learnable parameters, GLOPS by 10.6, GPU 
memory usage by 0.20 GB, and power consumption by 4 
watts. Moreover, this model achieved state-of-the-art 
accuracy. 

 

 
Fourth, in our “YOLOv5 freezed pretrained” model, we 

used the configuration from the “YOLOv5 lighter” model and 
then used Transfer Learning and Layer freeze method to 
reduce the GPU usage further. We used one of our pre-trained 
models and reused the weights from the model. Then we 
froze the first 6 layers of the backbone network. This 

experiment gave us the best overall result in terms of GPU 
memory usage as well as performance metrics. We were able 
to reduce GPU memory usage by 1.29 GB. The number of 
learnable parameters, GFLPOS, GPU Memory Consumption 
and Power Consumption for this model were 43942753, 97.7, 
2.54GB and 377 Watt, respectively. This model used 7 watts 
less power and had 10.6 less GFLOPs than the baseline 
model. Finally, applying Transfer Learning and Layer freeze 
method on the “Small and mid scale” model, we further 
reduced the GPU memory usage and power consumption. 
Our “Small and mid-scale freezed pretrained” model used 12 
watts less power, 1.41 GB less GPU memory and had 10 
GFLOPS less than the baseline model. 
 

In summary, our “YOLOv5 freezed pretrained” and 
“YOLOv5 lighter” models use less power and GPU memory 
and achieve the state-of-the-art accuracy. Therefore, these 
two models are suitable for real-time object detection in 
resource-constrained edge devices. Moreover, the “Small and 
mid-scale” and “Small and mid-scale freezed pretrained” 
models are suitable for application specific tasks for small 
object detection such as traffic monitoring. From Table 3, we 
can see that our best model, the “YOLOv5 freezed 
pretrained” model, takes a small amount of GPU memory 
(2.54 GB) with an mAP of 63.86 (see Fig. 10) on the DIOR 
dataset, which is slightly better than the YOLOv5 baseline 
model produces (see Table 2). 

VI. CONCLUSION 
DNN architectures for the real-time object detection from 

overhead imagery are hard to scale to edge and mobile 
processing devices due to rapid deterioration in their 
performance when the number of objects in the image is large, 
the image itself is large, and the sizes of objects vary. Even the 
best models do not perform well with this dataset. We have 
proposed a lighter model, which takes advantage of the 
assumptions in the DNN architecture that are not applicable 
for the overhead imagery.  Our proposed model meets full-
model mAP and consumes 34% less power and GPU memory. 
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