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ABSTRACT1
Roadways facilitate drivers’ mobility and provide access to land development and commercial es-2
tablishments. However, conflicts can arise when roadways are expected to cater to high-speed3
traffic and simultaneously offer direct entry to properties. Access management becomes critical4
in such scenarios, necessitating careful planning and comparison crucial to arterial and collec-5
tor roadway systems. Access points are paramount in connecting public roadways with adjacent6
properties; they also contribute significantly to traffic accidents and congestion. To address these7
challenges, access management initiatives focus on specific corridors. Strategic approaches uti-8
lizing geographic information systems (GIS) can aid the decision-making process efficiently and9
effectively. This research introduces a comprehensive framework for detecting and classifying10
driveway density in a given location. The proposed framework utilizes Open Street Map (OSM)11
road network data to identify the coordinates of access points and corresponding Google Map12
satellite images for these points. A pre-trained Deep Neural Network (DNN) model is employed13
to extract deep features from the satellite images, and the k-Nearest Neighbor (k-NN) search is14
applied to classify the access points. The framework achieves an accuracy of 54.48%, surpassing15
the conventional DNN model by 0.35%, based on experimental Austin satellite image data. This16
framework aims to enhance access management strategies and improve road safety by harnessing17
advanced technologies and geospatial data.18

19
Keywords: Driveway densities, Computer vision, Safety performance.20
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INTRODUCTION1
Roadways serve two primary purposes: meeting the mobility requirements of drivers and granting2
direct entry to land development, including commercial establishments. Certain types of roadways3
are functionally categorized, designed, and regulated to cater to the needs of high-speed traffic4
passing through. A relevant example of such roadways is the Interstate Highway System in the5
United States, which lacks provisions for direct land access. Conversely, most roadways worldwide6
consist of local urban streets or rural roads. These roadways are primarily intended to facilitate7
limited traffic and predominantly offer low-speed access to neighboring and nearby properties.8

Conflicts related to access arise when the primary purpose of a roadway becomes ambigu-9
ous. Most access-related conflicts occur on routes expected to serve through traffic and provide10
property entry. Typically, these problematic routes are categorized as arterial or collector based11
on their function (1). Access management involves careful planning and controlling direct entry12
points from land development (whether through the public roadway system or private driveways) to13
the arterial and collector roadway systems. This is achieved through various measures and guide-14
lines, including standards for driveway spacing, clearance at driveway corners, the implementation15
of alternative access routes like frontage roads, and the installation of raised medians.16

Access points are crucial in the road transportation network as they connect public road-17
ways, adjacent properties, private developments, and facilities. However, access points also signif-18
icantly contribute to traffic crashes and congestion (2–4). Their positioning, design, and visibility19
often fail to meet the necessary safety standards for both vehicles and pedestrians. The left-turn20
movements, both entering and exiting the access points, are a significant factor in their inadequate21
safety performance. A comprehensive study on driveway crashes categorized by maneuver and22
collision type revealed that over 65% of accidents involving driveways occurred when vehicles23
were turning left into the access point (5). Research indicates that approximately 5% of urban24
crashes can be directly attributed to the presence of access points, while in rural areas, this per-25
centage rises to 7% (6, 7). Adding one access point per mile on two-lane roads in both urban and26
rural settings leads to an increase in the crash rate of approximately 1.5% (8, 9). Furthermore, sev-27
eral studies have found a relationship between the crash rate and the square root of access density28
(2, 10). Moreover, the Highway Safety Manual (HSM) (11) requires the inclusion of driveway den-29
sities based on land use type to develop safety performance functions (SPFs) for specific roadway30
facilities. For instance, urban access points are categorized into seven types: Major residential,31
Minor residential, Major industrial, Minor industrial, Major commercial, Major commercial, and32
other (11). As this data is not readily available, researchers use multiple approaches (including a33
manual count of driveways, which is labor intensive) to address this information gap.34

Access management initiatives are typically planned and executed on a corridor-specific35
basis (12). However, it is also possible to adopt more strategic approaches to access management36
by leveraging technologies like geographic information systems (GIS). These advanced tools en-37
able a comprehensive understanding of access management needs by integrating geospatial road38
inventory data, safety management data, land use planning information, and remote sensing data.39
This holistic approach allows for more efficient and adequate decision-making in access manage-40
ment projects.41

Designing a research study that utilizes computer vision technology could be a unique42
and valuable contribution to access management. By leveraging computer vision algorithms and43
image processing techniques, it aims to develop a novel method to detect and count access points44
along roadways automatically. This process can streamline the data collection, eliminating the45
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labor-intensive manual counting of driveways. By integrating computer vision with geospatial1
road inventory data and land use planning information through GIS, a comprehensive and strategic2
approach to access management can be achieved by this method. This study also performed the3
accuracy and reliability of the applied algorithm in identifying different types of access points,4
such as central residential, minor residential, major industrial, and others.5

The rest of the paper is organized as follows. The Related Work section explores the litera-6
ture review. The Methodology section provides a detailed presentation of the proposed framework.7
The Experimental Analysis section outlines the dataset used for conducting experiments. The Re-8
sults section presents the outcomes of the experiments and discusses the insights gained. Lastly,9
the Conclusion section offers conclusions, highlights unique contributions, addresses limitations,10
and suggests future research directions.11

RELATED WORK12
Urban road classification is a crucial task in transportation planning and management. Accurate13
road classification helps authorities design efficient traffic management strategies, prioritize road14
maintenance, and improve overall urban mobility. Our proposed framework focuses on the classi-15
fication of urban roads from Remote Sensing Images (RSIs) based on the surrounding land use of16
Point Of Interests (POIs).17

The datasets used for land cover and land use classification exhibit variations in their cat-18
egories, and efforts have been made to enhance surface coverage. Castillo-Navarro et al. (13)19
have developed datasets covering multiple scenes to achieve this goal. However, these datasets20
also differ in the labels attached to them (14). For example, SEN12MS (15) provides pixel-level21
labels, while BigEarthNet [sumbul2019bigearthnet] offers image-level labels. Consequently, these22
datasets are suitable for specific semantic segmentation applications due to their different scene23
categories.24

In the context of land use and land cover (LULC) classification, numerous semantic classes25
exist, including hundreds of fine-grained classes such as buildings, roads, vehicles, countryside,26
and urban areas. However, many existing datasets overlook the relationships within and between27
semantic classes, neglecting important contextual information (16). High-resolution remote sens-28
ing images (RSIs) provide rich and detailed spatial, geometric, and textural information (17), mak-29
ing them ideal for accurate land-use classification. Over time, the development of land-use clas-30
sification in RSIs has progressed from pixel-based image analysis to object-based image analysis31
and pixel-level semantic segmentation (18).32

Traditional classification methods have mainly relied on spectral information from low-33
resolution remote sensing images, leading to suboptimal results for complex land-use types like34
residential land and wasteland. The lack of comprehensive textural and structural features in35
spectral features often hinders the accurate representation of land-use characteristics (19). To ad-36
dress these limitations and improve the efficiency of training datasets, various techniques such37
as Transfer Learning, Active Learning, and others have been developed (20). Researchers have38
also explored pretraining networks for feature extraction, data domain adaptation, and migration39
experiments to enhance classification accuracy (21, 22).40

Object-oriented classification methods have emerged as a solution to the shortcomings of41
pixel-based approaches. These methods consider the correlation between pixels and the internal42
texture features of ground objects while utilizing spectral information from RSIs (23, 24). How-43
ever, feature descriptions in these methods may still be inadequate to support precise classification44
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and recognition of ground objects.1
Deep learning has revolutionized land-use classification in RSIs by capturing shape and2

texture features of different objects, overcoming the limitations of traditional artificial features and3
enabling pixel-level classification (25). Various deep learning models and hybrid frameworks have4
been proposed, showing promising results in land-use scene classification and detailed mapping of5
urban landscapes (26–28). Early FCN-based models could partially identify features but struggled6
with issues such as loss of high-frequency details, blurred boundaries, and limited spatial informa-7
tion reconstruction. To address these problems, a skip connection was incorporated into the net-8
works. The U-Net Architecture, introduced by Ronneberger et al., employed a decoder structure9
to aggregate multi-layer feature maps from the encoder through step-by-step upsampling, result-10
ing in high-resolution feature maps (29). This fusion of high and low-level semantic information11
enhanced the classification accuracy, especially for object boundaries.12

In subsequent advancements, Yu and Koltun introduced atrous convolution into fully con-13
volutional networks (FCN), allowing for the preservation of image resolution while expanding the14
receptive field to capture multi-scale context information, thus improving semantic segmentation15
accuracy using spatial information (30). To capture global context information more effectively,16
Spatial Pyramid Pooling (SPP) (31) gained widespread adoption. Zhao et al. utilized a pyra-17
mid pooling module to aggregate context from different regions, thereby leveraging the power of18
global context information (32). Further innovations were made by Chen et al., who implemented19
pyramid-shaped atrous pooling in spatial dimensions (33) and employed cascaded or parallel atrous20
convolution (34) to gather multi-scale information (35). Despite the progress made with Atrous21
Spatial Pyramid Pooling (ASPP) (33), limitations persisted, as the resolution in the scale axis di-22
mension was insufficient to accurately extract target features in remote sensing images (RSIs).23
To overcome these limitations, Yang et al. proposed the densely-connected Atrous Spatial Pyra-24
mid Pooling (DenseASPP) (36), which achieved a wider scale of the feature map and obtained25
more comprehensive receptive field information. This allowed for better classification of complex26
scenes without increasing the model size. In addition, crowdsourced data, such as points of inter-27
est (POIs), has also been applied for classification, offering an alternative to current methodologies28
for LULC classification (37). Linked open geospatial data, including POI data, has shown poten-29
tial as inputs for land-use classification models (38). Combined deep learning models have been30
developed to tackle the challenge of limited well-annotated samples. For example, Semi-MCNN31
selects and generates datasets from large amounts of unlabeled data, integrated with a multi-CNN32
framework, to improve generalization ability and classification accuracy (39). For heterogeneous33
urban land-cover, Zhang et al. proposed impervious surface area-weighted building-based indices34
from building outline data, considering the varying contributions of different ground objects in35
land-use classification, such as landscape patterns and building functions (40). These innovative36
approaches and data sources contribute to advancing the field of land-use classification in remote37
sensing images.38

The literature review suggests a potential research need that involves exploring efficient39
methods to integrate and utilize diverse data sources, including POIs, linked open geospatial data,40
and crowdsourced data, to improve the accuracy of land-use classification and feature count related41
data. This study aims to mitigate the research gap by enhancing the robustness and generalizability42
of deep learning models, particularly when dealing with complex land-use types in regions with43
diverse urban landscapes.44
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FIGURE 1 Proposed framework employs access point coordinates from Open Street Map,
access point satellite images from Google Map, feature vectors from Resnet50, and k-NN
search for classification.

METHODOLOGY1
This paper presents a comprehensive framework shown in FIGURE 1, aimed at detecting and2
classifying driveway density in a given location, such as a city, state, or country. The proposed3
framework leverages various data sources, including Open Street Map (OSM) road network data,4
Google Map satellite images, and the k-Nearest Neighbor (k-NN) search in deep features.5

• The first step of the framework involves extracting the latitude and longitude coordinates6
of all available access points in the target location using the OSM road network data.7
These access points serve as reference points for further analysis.8

• Next, a database of satellite images is created for each access point based on its latitude9
and longitude. This is accomplished by collecting satellite images from Google’s satellite10
image collection. Each access point is associated with a relevant satellite image.11

• To extract meaningful features from these satellite images, a pre-trained Deep Neural12
Network (DNN) model is utilized. Specifically, the Resnet-50 (41) model, trained on the13
NWPU-RESISC45 (42) and UC Merced Land-Use (43) datasets, is employed for feature14
extraction. This allows for the extraction of high-level representations of the satellite15
images.16

• Once the deep features are obtained, a k-NN index is built using the feature vectors. The17
k-NN search is then performed on this index to retrieve similar items (in this case, the18
training images) for each access point. The user can adjust the parameter k, representing19
the number of nearest neighbors to consider.20

• To determine the classification of each access point, a majority voting approach is applied21
to the retrieval results. The winning class, determined by the most frequently retrieved22
category from the k-NN search, is assigned to the respective access point.23

Overall, this framework offers a systematic approach to detect and classify driveway den-24
sity by combining road network data, satellite images, and deep feature extraction with k-NN25
search. It provides a valuable tool for analyzing and understanding the distribution of access26
points within a given location. The framework consists of three significant steps: Satellite im-27
age acquisition, Feature extraction using Deep Neural Network, and K-Nearest Neighbor Search28
and classification.29
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FIGURE 2 Road network for drivable urban roads for Austin, where nodes represent the
access points and the edges represent the driveways.

Satellite image acquisition1
The initial stage of our framework involves obtaining satellite images for the access points in a2
specified target area. We utilized the OSMnx library, a Python package that retrieves, models,3
analyzes, and visualizes street networks from Open Street Map. By employing OSMnx (44), we4
extracted all the access points from the road network data. We focused on drivable urban access5
points and obtained their corresponding geographic coordinates for our purposes.6

FIGURE 2 shows the road network for driveable roads in Austin, where the nodes represent7
the access points and the edges represent the driveways. Once we acquired the coordinates for these8
access points, the next step was to download the respective satellite images from Google Maps.9
We achieved this by utilizing a Python Client for Google Maps Services (45). By completing10
these steps, we can create a comprehensive database of satellite images for access points in any11
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FIGURE 3 Feature extraction using Resnet50.

given location. Subsequently, we can classify these images as part of the subsequent stages in our1
framework.2

Feature extraction using Deep Neural Network3
The next step in driveway density classification involves efficient data representation. In our spe-4
cific case, the input data in our pipeline consists of images. Vector format is a widely used rep-5
resentation method for image data, and various approaches are available. One popular way is to6
use Deep Neural Networks (DNNs) to extract feature vectors. The success of DNNs in feature7
extraction can be attributed to factors such as the abundance of data and computational power.8

Considering the previous achievements of DNNs in object detection within images (46–9
49), we have opted to employ the ResNet50 (41) architecture for generating feature vectors from10
our image data. FIGURE 3 illustrates that the ResNet50 model is constructed using multiple Con-11
volution (Conv) blocks stacked sequentially. The initial seven blocks in the ResNet50 network are12
Convolutional blocks with 64-channel outputs and a stride of one. The subsequent block begins13
with a Conv block having a stride of 2 and an output channel 128. This pattern continues with out-14
put channels 256 and 512. Following this, we apply average pooling to the output of the last Conv15
layer. Finally, we pass the result of the average pooling through Multi-layered Perceptrons (MLPs)16
and save the resulting output as a feature associated with its class in our database represented as17
a vector of length 2048. Later we use the deep feature database for k-Nearest Neighbor (k-NN)18
searching to retrieve similar images to a query image which we discuss later in detail.19

In summary, for efficient driveway density classification, we first focus on representing20
the data efficiently. In the case of image data, we adopt the ResNet50 architecture, a popular21
DNN model, to extract feature vectors. These feature vectors are generated by passing the data22
through a series of Convolution blocks, followed by average pooling and MLPs, resulting in a23
vector representation of length 2048 associated with its class.24

k-Nearest Neighbor (k-NN) Search and classification25
After completing the previous steps in our framework, we proceed with the final stage, which26
involves conducting a k-NN search in the feature database using the pre-trained model. This search27
is performed against the target image, generating a 2048-dimensional feature vector for the target.28
We execute the k-NN search within our feature database for each of these target features, allowing29
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TABLE 1 Data set classes and distribution

Class name Number of instances Number of instances Number of instances
(Combined Train) (Austin Train) (Austin Test)

Major residential 1500 250 50
Minor residential 700 250 50
Major commercial 570 250 50
Minor commercial 70 250 50
Major industrial 475 250 50
Minor industrial 150 250 50

us to obtain the k most similar items. Next, we assign the winning class to label the target image1
by applying majority voting to the retrieved classes.2

EXPERIMENTAL ANALYSIS3
All experiments were carried out on Windows 10, 64-bit with Intel(R) Xeon(R) Gold 5217 CPU4
@ 3.0 GHz with 196GB RAM and NVIDIA GeForce RTX A5000 24GB mem GPU.5

Training Dataset6
To classify driveways into six target classes (Major residential, Minor residential, Major indus-7
trial, Minor industrial, Major commercial, and Major commercial), we encountered a challenge in8
finding a single data set containing all six classes. To address this issue, we decided to create a9
new data set by combining two existing data sets: the UC Merced Land Use (43) data set and the10
NWPU-RESISC45 (42) data set.11

The UC Merced Land Use (43) data set originally consisted of 21 classes, each containing12
100 images. However, we selected only three classes from this data set for our driveway classifica-13
tion task: dense residential, medium residential, and sparse residential. These classes were chosen14
because they represented residential areas and were relevant to our classification problem. On the15
other hand, the NWPU-RESISC45 (42) data set contained 45 classes, with 700 images per class. In16
addition to the three residential classes from the UC Merced Land Use data set, we also included17
the commercial and industrial area classes from the NWPU-RESISC45 data set. These classes18
were included because they represented commercial and industrial areas, important categories for19
classifying driveways.20

By combining these selected classes from the UC Merced Land Use data set and the21
NWPU-RESISC45 data set, we created a comprehensive data set that covered a broader range22
of classes related to driveways. This hybrid data set allowed us to train a classification model23
distinguishing between major and minor residential and industrial areas and primary and minor24
commercial areas. By leveraging relevant classes from multiple data sets, we aimed to increase25
the diversity and representatives of our training data, enabling our model to generalize better and26
accurately classify driveways into the desired target classes.27

Next, we performed data pre-processing by combining the dense residential and medium28
residential classes from both data sets, which resulted in a new class called central residential.29
Similarly, we combined the sparse residential classes from both data sets into a minor residential30
class. This consolidation helped simplify the classification process. We visually separated the31
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FIGURE 4 Sample combined training data set with six classes: Major residential, Minor
residential, Major commercial, Major commercial, Major industrial, and Minor industrial.

commercial area class images from the NWPU-RESISC45 data set into two sub-classes: major1
commercial and minor commercial. Likewise, we applied the same approach to the industrial area2
class, creating significant and insignificant industrial classes. By doing this, we aimed to refine the3
categorization and improve the clarity of the data. Some training samples from the hybrid data set4
are shown in FIGURE 4.5

After these modifications, our final combined training data set consisted of six classes:6
central residential, minor residential, major commercial, minor commercial, major industrial, and7
minor industrial. To test the DNN model’s applicability, we also built a test data set by manually8
annotating the satellite images from Google Maps for the city of Austin into the six classes above.9
However, after thoroughly examining the combined training data set and Austin test data set, we10
have found that the building design and pattern are quite different for the city of Austin than that11
of the combined training data. Therefore, we have built a more balanced training data set from the12
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FIGURE 5 Sample Austin training data set with six classes: Major residential, Minor resi-
dential, Major commercial, Major commercial, Major industrial, and Minor industrial.

satellite images from Google Maps for Austin. Some sample images from the Austin training data1
set are shown in FIGURE 5). The distribution of combined training, Austin training, and Austin2
test data set is presented in TABLE 1.3

During our analysis of the training data set, we noticed a significant similarity between4
the samples belonging to major commercial and minor commercial and major industrial and little5
industrial classes. This high inter-class similarity posed a challenge for our Deep Neural Network6
(DNN) model, which frequently misclassified images from these similar class pairs. We have7
documented this issue in the Results Section. To address this problem, we incorporated a k-NN8
search technique into our classification pipeline. With the k-NN search, we retrieve the k most9
similar items from our feature database when presented with an input image. We then employ10
majority voting, assigning the class that appears most frequently among the retrieved similar things11
to the input image.12
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TABLE 2 Notation table.
Symbol Description
T P True positive
T N True negative
FP False positive
FN False negative

Our rationale behind adopting the k-NN search and majority voting is to leverage the sim-1
ilarities between images in the feature database to enhance the accuracy of our classification pro-2
cess. By incorporating this approach, we aim to mitigate the misclassification issues caused by3
the high inter-class similarity between certain classes. Detailed results and further analysis can be4
found later in this section.5

Performance metrics6
We have used four metrics to measure the performance of the Deep Neural Network (DNN) model:7
accuracy, recall, Precision, and F1-score. All the notation symbol and their description in this8
section are shown in TABLE 2.9

Accuracy measures the overall correctness of a classification model. It is calculated as the10
ratio of correctly predicted data instances to the total number of data instances in the data set. The11
formula for calculating accuracy is given in equation 1.12

Accuracy =
T P+T N

T P+T N +FP+FN
(1)

TABLE 3 Hyper-parameter settings for DNN train
Hyper-Parameter Value
Batch-Size 32
Num. of Epoch 15
Loss Function Cross-Entropy
Optimizer Stochastic Gradient Descent (SGD)
Class in Dataset 6

Recall measures the ability of a classification model to correctly identify positive instances13
(e.g., true positives) out of all actual positive instances (e.g., true positives and false negatives).14
The formula for calculating accuracy is given in equation 2.15

Recall =
T P

T P+FN
(2)

Precision measures the accuracy of the positive predictions made by the model. It is calcu-16
lated as the ratio of true positive instances to the total number of cases predicted as positive (true17
positives and false positives). The formula for calculating accuracy is given in equation 3.18

Precision =
T P

T P+FP
(3)

F1-score is the harmonic mean of precision and recall. It combines both metrics to provide19
a score that balances precision and recall. The formula for calculating accuracy is given in equation20
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FIGURE 6 Train accuracy and loss on combined train data set w.r.t Number of epochs.

FIGURE 7 Train accuracy and loss on Austin train data set w.r.t Number of epochs.

4.1

F1− score = 2× Precision×Recall
Precision+Recall

(4)

RESULTS2
Our initial step in the feature DNN training process involved training the ResNet50 model using3
the combined train data, following the specifications provided in TABLE 3. The performance of4
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TABLE 4 Hyper-parameter settings for DNN train
Metric Resnet50 trained on combined data set Resnet50 trained on Austin data set

without k-NN search with k-NN search without k-NN search with k-NN search

Accuracy 42.75% 43.79% 61.00% 59.33%
Recall 21.56% 21.63% 61.00% 59.33%

Precision 17.68% 24.74% 60.50% 62.49%
F1-score 19.43% 23.08% 60.75% 60.87%

the ResNet50 model during the training phase was impressive, yielding a high training accuracy1
of 99.83%. The accuracy and loss trends of the model during training are visualized in Figure 6,2
demonstrating its proficiency in learning from the training data.3

FIGURE 8 Confusion matrix for the classification with k-NN search of the Austin satellite
image data set.

However, its performance was disappointing when we tested the trained model on the4
Austin test image dataset. The model achieved an accuracy of only 42.75% on the Austin satel-5
lite image data set (as shown in TABLE 4). The recall, precision, and f1-score for the Austin6
test dataset were also relatively low, indicating poor performance in correctly identifying positive7
instances.8
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To address this issue, we took a different approach. We retrained the model using only the1
Austin train dataset while keeping the hyper-parameters the same as those in TABLE 3. Surpris-2
ingly, the model’s performance significantly improved during this second training phase, achieving3
an accuracy of 99.94% (as shown in FIGURE 7). When tested on the Austin test dataset, the model4
achieved an accuracy of 61%, showcasing an impressive 18.75% improvement in accuracy com-5
pared to training on the combined train dataset. Furthermore, the recall, precision, and f1-score6
also exhibited noticeable improvements over the previous approach (as summarized in TABLE 4).7

We employed the k-NN search technique to further enhance classification performance by8
extracting deep features during the training phase. As demonstrated in TABLE 4, the k-NN search9
contributed to improved classification performance compared to using only the ResNet50 model10
for each comparison metric. Nevertheless, the improvement was limited due to the challenges11
posed by the dataset’s imbalance and high inter-class similarity. The confusion matrix presented in12
FIGURE 8 revealed that the classification with the k-NN search often confused between major and13
minor classes, mainly because of the similarities between corresponding major and minor classes.14

The results indicate that training the model specifically on the Austin train data set led to15
substantial performance improvements. However, despite using the k-NN search, challenges aris-16
ing from high inter-class similarity remain limiting factors in achieving further significant improve-17
ments in classification accuracy. Addressing these challenges and exploring additional techniques18
may be essential for enhancing the overall classification performance and ensuring more accurate19
and robust results.20

CONCLUSION AND FUTURE WORK21
In conclusion, this paper sheds light on the dual role of roadways in facilitating driver mobility22
and providing access to land development and commercial establishments. The coexistence of23
high-speed traffic and direct entry points to properties often leads to conflicts, necessitating effec-24
tive access management strategies. The careful planning and control of entry points to arterial and25
collector roadway systems become essential in addressing these challenges. Access points play a26
crucial role in connecting public roadways with adjacent properties, but they also pose significant27
risks, contributing to traffic accidents and congestion. Therefore, it is imperative to focus on ac-28
cess management initiatives to mitigate these adverse effects. While traditional approaches often29
concentrate on specific corridors, this paper introduces a more strategic approach by leveraging30
geographic information systems (GIS) to enhance overall efficiency and decision-making.31

The comprehensive framework proposed in this paper offers a promising solution for de-32
tecting and classifying driveway density in a given location. The framework identifies access point33
coordinates using Open Street Map (OSM) road network data and Google Map satellite images. It34
applies a pre-trained Deep Neural Network (DNN) model to extract deep features. The subsequent35
application of the k-Nearest Neighbor (k-NN) search results in an f1-score of 60.87%, outperform-36
ing the conventional DNN model by 0.12%, as demonstrated on the experimental Austin satel-37
lite image data. This framework’s success indicates its potential to enhance access management38
strategies and improve road safety in various locations. By harnessing advanced technologies and39
geospatial data, the framework offers a promising avenue to address access-related challenges and40
promote efficient and safe transportation systems. The framework developed in this paper will be41
beneficial in populating the needed driveway density information for the urban/ruran roadway SPF42
development.43

Several limitations of the current study should be acknowledged, including the dependence44
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on dataset size and quality, potential inaccuracies in driveway classification, and computational1
complexity. In future research, expanding the dataset to improve generalizability, implementing2
real-time solutions for practical application, integrating the framework with traffic management3
systems, and addressing privacy concerns are essential areas of focus. Evaluating the long-term4
impact of access management strategies based on the framework’s recommendations is also cru-5
cial to measure effectiveness in improving road safety and traffic flow. Despite these limitations,6
the framework offers a promising avenue for addressing access-related challenges and promoting7
efficient and safe transportation systems.8
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