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Abstract—The variability in different altitudes, geographical
variances, and weather conditions across datasets degrade state-
of-the-art (SOTA) DNN object detection performance. Unsu-
pervised and Semi-supervised domain adaptation (DA) have
been decent solutions to bridge the gap between two different
distributions of datasets. The state-of-the-art pseudo-labeling
process is susceptible to background noise, hindering the optimal
performance in target datasets. The existing contrastive DA
methods overlook the bias effect introduced from the false
negative (FN) target samples, which misleads the complete
learning process. This paper proposes DCLDA (support-guided
debiased contrastive learning for domain adaptation) to properly
label the unlabeled target dataset and remove the bias toward
target detection. We introduce (i) A support-set curated approach
to generate high-quality pseudo-labels from the target dataset
proposals, (ii) a reduced distribution gap across different datasets
using domain alignment on local, global, and instance-aware
features for remote sensing datasets, and (iii) novel debiased
contrastive loss function, that makes the model more robust for
the variable appearance of a particular class over images and
domains. The proposed debiased contrastive learning pivots on
class probabilities to address the challenge of false negatives in the
unsupervised framework. Our model outperforms the compared
SOTA models with a minimum gain of +3.9%, +3.2%, +12.7%,
and +2.1% of mAP for DIOR, DOTA, Visdrone, and UAVDT
datasets, respectively.

Index Terms—Object Detection, Unsupervised Domain Adap-
tation, Debiased Contrastive Learning, UAV Images, Remote
Sensing Analytics

I. INTRODUCTION

Remote sensing images (RSI) have numerous applications
in surveillance and intelligence decision-making systems such
as agriculture, urban planning, rescue missions, and trans-
portation systems. Research work has followed suit and
demonstrated what automated analytics can uncover for the
geographic mapping of resources [1], crop harvest analysis [2],
emergency rescue [3], and terrestrial and naval traffic moni-
toring [4]. Automating aerial analytics requires localization
and identification of objects in the frame. The challenge is
that videos captured from high altitudes have a much higher
content variability than videos captured with a person’s phone.
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Fig. 1: Visual difference between consumer [5] and remote
sensing images [9].

Examples of low variability frames in consumer data and
high variability in overhead structures of similar pixel size are
illustrated in Figure 1. We can see how much aerial imagery
content covers large geographic areas and varies significantly
within the same capture or drone flight region. We group the
data variability along four dimensions w.r.t object detection
task, two related to video content capture variability, and two
related to the object in the video variability:
1. Lighting Conditions significantly change the video footage
captured even during one drone flight. The changes can be
due to the time of day, season, weather, and cloud distribution.
Figure 2(a) shows the variations due to image capture time and
lighting conditions, and the pixel intensity distribution varies.
2. Variation in Object Size is large in the same dataset
due to different areas captured (e.g., urban vs. rural). The
objects in the frame can vary from under 0.01% to almost
70% of the entire frame. The variation is even higher between
different datasets, as the footage is captured over multiple
dates, terrains, and missions. Figure 2 (b) (left) contains well-
defined objects, while Figure 2(b) (right) contains lots of small
(players and cars) densely packed objects.
3. Geographical variance of the terrestrial terrain captured in
the imagery from such high altitude poses a critical challenge
for object localization. Figure 2 (c) illustrates the example of
the large geographical variance that can exist.
4. Object Distribution variations in images make it challeng-
ing to separate nearly objects and eliminate overlapped objects
while performing Non-max Suppression (NMS).
5. Object Labeling in aerial datasets is challenging as it is
hard to distinguish correct labels among small and densely-
packed objects [11]. Today, only a few aerial datasets exist that
cover natural scenario object class diversity and a sufficient
number of training examples.

A common technique to generalize a model is to train
on one source dataset and fine-tune its application to an-
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Fig. 2: High-variability remote sensing frames: (a) lighting conditions variations, (b) variations in object shape and scale, and
(c) high variability due to geographical and weather changes.

other target dataset. However, such an approach is inefficient
due to high domain shifts across datasets and the need for
manual annotations of the target domain dataset. Therefore,
unsupervised domain adaptation (UDA) methods offer a way
to effectively transfer the knowledge gained from trained
models on labeled source data to the unlabeled target data.
UDA creates domain invariant features using feature alignment
techniques and reduces the domain gap between the different
distributions of datasets. Based on this idea, the unsupervised
domain adaptation methods have been widely used in the
classification and segmentation tasks of RSIs [12], [14]. These
techniques mainly focus on mitigating the disparity by leverag-
ing semantic feature alignment between the source and target
domains. Later, Maximum mean discrepancy (MMD) [16]
was utilized to preserve the main statistical properties across
domains by minimizing the distribution distance between the
source and target domains.

Various domain adaption techniques have been proposed
to improve the cross-domain classification and semantic seg-
mentation task [12], [19], [31]. To our knowledge, few object
detection benchmarks exist for remote-sensing images. The
dataset’s highly dense and variable nature hinders the progress
of pseudo-labeling and optimal object detection performance
of the RS Images. Xiong et al. tackle the domain shift raised
from the image and instance levels relying on the source-
free feature alignment at the image and the instance level
[22]. On the other hand, Yan et al. introduce a semantics-
guided contrastive network to transfer semantic information
for classes that have not been previously encountered [7]. Chen
et al. presented a cross-domain adaptation object detection
network that is rotation-invariant and relation-aware [10]. This
network incorporates a relation-aware graph for aligning fea-
ture distributions and includes a rotation-invariant regularizer
to handle variations in rotation. However, they still suffer
from several limitations pointed out in this [10] work. Most
unsupervised domain adaptation techniques require labeling
the target datasets for instance-level domain adaptation and
feature alignment. The existing pseudo-labeling techniques are
solely cluster-based, not addressing the possible background
noise being considered as foreground objects. Several deep

learning clustering techniques [13], [18] have been devised
for RGB and Hyperspectral Image (HSI) embedding clas-
sification (HSIC) tasks. These works [8], [13] use Graph-
based semi-supervised learning techniques combined with
tensor-based neural network embeddings for the problem of
hyperspectral data classification. Moreover, Spectral–spatial
transformation was also introduced in [8] to learn superpixel-
level spectral–spatial features from hyperspectral images. The
improved performance from deep-learning-based clustering
methods comes with large computational overheads. How-
ever, we aim to use a faster technique without incurring
more learnable parameters in the pipeline. Previous non-deep
learning methods use traditional k-means or one vs. all for
the target dataset pseudo-labeling. In this work, we use an
advanced clustering technique K-means++ [6] for generating
target labels due to its proven performance [15] in high-
dimensional data. Secondly, the current contrastive learning
approach follows the INFONCE [20] loss function with a
single positive instance. Two problems are involved with this
technique: (i) the INFONCE loss itself does not restrict the
false negative image being selected as the negative case. For
example, while performing local and global domain adapta-
tion, the negative cases are selected randomly, and an image
similar to the query image (See Figure 5) may be selected as a
negative case. (ii) the default INFONCE loss works with only
a positive example. However, it is essential to consider positive
samples with variable appearance for a particular class over
images and domains. So, instead of using the single example
as the positive sample, we propose to use N numbers of
positive samples for contrastive learning. Besides, We use the
Few-shot approach to remove the noise attracted by unwanted
background object proposals. The previous work on debiased
contrastive learning [17] focuses only on balanced datasets.
However, our experimental datasets are highly imbalanced;
thus, this approach is invalid for our task. In summary, we
propose the following research improvements:
1. Novel framework to address the high variability of remote
sensing images for the object detection and labeling task in
previously unseen datasets.
2. Efficient pseudo-labeling process that depends on N-shot
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learning to remove the unwanted background noise from the
target object proposals. The experiments show that curating
target proposals significantly improves the target domain de-
tection performance.
3. Debiased contrastive learning for imbalanced remote sens-
ing data, which is very important to produce domain-invariant,
but at the same time, we need to maintain class variance near
the decision boundaries in the feature space. Also, we carefully
filter out the False Negative examples that can disturb the
learning process and result in poor performance.
4. Positive multi-sampling of N-variants positive samples in
domain adaptation [17].

The rest of this article is organized as follows. Section II
summarizes related work, and Section III introduces the pro-
posed DCLDA method describing the debiased contrastive
learning approach and the different DA modules in the
pipeline. In Section IV, the proposed framework is evaluated
using the latest cross-domain detection benchmarks over two
high-altitude and two low-altitude remote sensing datasets.
Finally, Section V summarizes the quantitative findings and
outlines future works.

II. RELATED WORK

Full potential use of Deep Neural Networks and Machine
learning has been crucial in solving recent consumer applica-
tions [23], [24]. Recent advantages in the field show that the
object detection task can be successfully solved for the Drone
captured Visdrone dataset[25] and the COCO consumer image
benchmark dataset [26].

The key to the success of DNNs is the automatic feature
extraction strategy, which is more efficient in extracting se-
mantic details and local features. There have been numerous
works to make object detection better and more efficient. The
architecture of the object detection models can be divided
into two branches: 1) One-Stage Detector and 2) Two-Stage
Detector. One-stage detectors [27], [28], [25] are by nature
faster and lightweight due to less learnable parameters and
FLOPS. For generating region proposals, one-stage detectors
use different scale and aspect ratios of anchors. On the other
hand, two-stage detectors use a separate module called Region
Proposal Network (RPN), which is responsible for generating
strong region candidates for object detection.

Object Detection in Remote Sensing Images: Shi et
al. propose an anchor-free-based detector called Centerness-
Aware Network (CANet), which captures the symmetrical
shape of objects in remote sensing videos [29]. Biswas and
Tešić suggest a strong custom backbone and an image diffi-
culty scoring technique [30] to help detect small and complex
objects. Xin et al. [32] use the local and global contrast
information to effectively detect small bright and dark objects
from Infrared images. Authors embed a small-sized U-Net
into a larger U-Net backbone, which allows the multi-level
and multi-scale representation learning of objects. Zhang et al.
find that context-based feature extraction is more effective for
detecting complex objects and scenes in the overhead imagery
[33]. Global Context-Weaving Network incorporates a global
context aggregation module and feature refinement module

[34], and transformer-based CNN encoders are used for better
feature extraction [35]. Qingyun et al. perform extensive image
augmentation to increase the number of samples in the minor
classes. Zhu et al. modify darknet53 backbone with Cross
Stage Partial DenseNet and add a transformer head in the
detection layer, which gains state-of-the-art results of overhead
drone images [25]. Overall, the overhead video frame images
require special care in anchor design for one-stage detectors,
and a good RPN should be chosen in two-stage sensors to
capture every small object from different levels of features.

Fig. 3: Contrastive Learning alignments: different colors rep-
resent different domains, and shapes represent different cate-
gories.

Unsupervised Domain Adaptation: Training data for RS
images can differ significantly from the source domain to
the target domain regarding geographical, illumination, and
visual characteristics. Besides RGB images, Hyperspectral
remote sensing images also suffer from variable illumination,
environmental changes, and instrumental noise conditions.
Hong et al. [21] handle these issues as a dictionary learning
problem, where the spectral variability dictionary and esti-
mation of the abundance maps are learned simultaneously.
For a labeled source dataset and an unlabeled target dataset,
unsupervised domain adaptation methods generalize the model
by aligning source and target [36]. Cheng adjusts the decision
boundary biased towards the target data source domain and
adds adversarial training in conjunction with image-to-image
translation techniques [37]. Xiong et al. rely on the source-free
feature alignment at the image and the instance to tackle the
domain shift raised from the image and instance levels [22].

On the other hand, Mattolin et al. implement the confidence-
based mixing (ConfMix) of source and target domain images,
where the confidence of an instance proposal is calculated
based on the objectness score and the bounding box un-
certainty score of each instance proposal from the image
[38]. A novel SemantIc-complete Graph MAtching (SIGMA)
[39] framework was proposed for the Domain Adaptation
task, which completes mismatched semantics and reformulates
the adaptation with graph matching. Primarily, the Graph-
embedded Semantic Completion module (GSC) can address
mismatched semantics by producing hallucination graph nodes
within the absent categories. However, the above methods do
not handle the imbalanced dataset problem and high-domain
gap scenarios available in remote sensing images.

Contrastive Learning for Domain Adaptation: It is hard
to discriminate object classes in high-variable remote sensing
images. Contrastive learning is a technique that is a good fit as
it contrasts samples against each other to learn commonalities
and differences between respective object classes. Wu et al.
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Fig. 4: Unsupervised Domain Adaptation Architecture with Debiased Contrastive Learning(DCLDA).

propose a probabilistic model to analyze the influence of the
negative sampling ratio on training sample informativeness
[40]. Yan et al. propose a semantics-guided contrastive net-
work to transfer semantic information for classes not seen
before [7]. Bai et al. propose a strategy called RefosNet to
a representation focus shift network (RefosNet), which adds
the rotation transformations to CL methods to improve the
robustness of representation [41]. Li et al. use contrastive
learning on overhead imagery for the semantic segmentation
task [42]. Biswas et al. perform contrastive learning for object
detection on the image-level feature alignment [43]. However,
these works do not address the noise introduced in the pseudo-
labeling process. Also, the mentioned contrastive learning
approaches are unsuited for highly imbalanced datasets where
debiasing is required to reduce false negative samples.

III. METHODOLOGY

The baseline detection architecture is built on [43], as
illustrated in Figure 4, which uses a better backbone and the
saliency-weighted custom focal loss function for improved
performance. The saliency information from each image is
used to calculate the difficulty score of each image. Based on
this saliency/ difficulty score, the Loss function assigns more
penalties on difficult images and less on easy images.

Contrastive learning evaluates pair-to-pair relationships by
measuring the similarities between different sample pairs,
such as query-positive or query-negative. Here, the query is
the subject feature, whereas positive samples are augmented
features similar to the subject, and negative examples are
randomly selected features dissimilar to the subject feature.
Performing only image-level contrastive domain adaptation is
a vital feature alignment strategy that ensures that local and
global features from the source and target datasets are domain
invariant by overlapping two distributions. However, It comes
with the sacrifice of the instance level discriminability, as illus-
trated in Figure 3(middle). Hence, our goal is simultaneously

aligning the image and instance level, as shown in Figure
3(right).

A. Unsupervised Domain Adaptation

In this paper, we perform unsupervised domain adaptation
at local, global, and instance levels. The goal is to generate
domain-invariant features at different levels of image features
and perform better in unseen/target datasets. We also prove
the performance gain from our proposed debiased contrastive
loss in the learning phase. We denote the source as S, and
the target dataset as T . The CycleGAN network produces
synthesized images (see input images in Figure 4) from source
to target and vice-versa. The synthesized images from source
to target are denoted as S′, where the object formation is
the same as the source image, but the pixel color emulates
the target dataset. On the other hand, T ′ denotes target-to-
source conversion, where object formations are the target and
pixel color follows the source domain. The domain adaptation
with contrastive learning is performed bi-directional between
(S, T ′) and (T, S′) for better transferability and to minimize
the domain discrepancies between the two datasets. Consider-
ing (S, T ′) and (T, S′) as the source and target domain pairs,
we take local features from the earlier stage of the backbone
representing pixel-level and texture information and global
features from the later part of the backbone which means a
more abstract version of the object. The authors performed
only local-global domain adaptation in the baseline paper [43].
However, we take it further to instance-level transformation
with pseudo-labeling in the target dataset.

B. Support-Set Guided Pseudo Labeling

Ground Truth (GT) exists for the source dataset region
proposals. GT is used to separate positive and negative samples
in contrastive learning. We do not have any GT for the target
dataset, so we must generate labels for the target proposals to
guide contrastive learning. To perform pseudo labeling, the
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Fig. 5: Contrastive learning with multiple positive cases and
false negative filtering. Here, green connections denote higher
similarity, and red connections denote lower similarity with
the query case.

target domain instance feature vectors in a mini-batch are
collected from the RPN module (see Figure 4).

Early-stage target feature vectors are prone to background
noise and mistake many background scenes as foreground
objects. So, we introduce a support-set guided curation step
in the process that reduces the number of false positives from
target object proposals. First, we take R samples from each
of the C classes and create a R-shot support set to guide the
labeling process. Here, the dimension of the R-shot support set
is R

∏
C. Then, we match all features in a mini-batch with

the support set using cosine similarity metrics. Next, we keep
features that match any support samples passing some defined
threshold. As features are less useful during early epochs,
we restrict the number of unlabeled features for labeling to
minimize computation time and the target instance contrastive
loss. After every defined step size, we progressively increase
the number of features by some factors for the pseudo-labeling
task. The curated features are then used for target pseudo-
labeling through a clustering method.

The K-means++ is an improved version of the original K-
means clustering algorithm that aims to select better initial
centroids in high dimensions and reduces the chance of
the algorithm getting stuck to local optima compared to K-
means [44]. Thus, we use K-means++ to generate pseudo
labels through clustering from deep features. The clustering
performance of the K-means++, as shown in Figure 6 and the
value of K for clustering, is selected empirically. The selection
process of K is described later in Subsection IV-F and Table
IX.

C. Debiased Contrastive Learning

Contrastive learning is a process of matching different
distributions based on query (Q) and key (K) embeddings
[45], [47]. The value of the contrastive loss function is lower
when there are high similarities between the Query (Q) and

positive key (K+) pair and low similarities between the
Query(Q) and negative keys (K−) pairs. Contrastive learning
performs domain alignment by keeping similar points closer
and different points distant, as illustrated in Figure 3. The most
used formula for contrastive learning is outlined in Equation 1,
where τ is a hyper-parameter known as temperature to put
penalties on the calculated similarities [46], [48].

CL = −log
exp(sim(Q,K+)/τ)∑N
i=1 exp(sim(Q,K−

i )/τ)
(1)

The similarity can be calculated using cosine, Euclidian, or
Wasserstein distance functions. The cosine similarity score
is used in the experiments and calculated as sim(x, y) for
two features x, and y is sim(x, y) = xT /(||x|| ∗ ||y||). We
calculate query similarity CL in Equation 1 as a normalized
sum of the similarity of query vector Q to N negative samples.
In the baseline paper [43], the authors used eq.1 for the
local and global domain adaptation, where only a single
augmented image was used as the positive case. However,
earlier research shows that [17] including more than one
positive case in contrastive learning can better generalize the
feature representation. Based on this idea, we modify the loss
function in Equation 1 as below:

CL = −log

∑M
i=1 exp(sim(Q,K+

i )/τ)

M ∗
∑N

j=1 exp(sim(Q,K−
j )/τ)

(2)

In Equation 2, M is the number of augmented positive
samples for the query. We perform a cross-product between the
query and positive cases following this operation Q(1, size)×
K+(M, size)′ = Sim(1,M), which gives a column vector
with a dimension equal to positive cases (M). Then, we
average all the logits and compute a single scalar value as
the final similarity score. It is shown in section IV that
adding more than one positive case significantly improved the
performance across different datasets.

Another challenge for contrastive learning is imbalance
classes. Table I shows that the real datasets are highly im-
balanced. As samples for contrastive learning are selected
randomly, we cannot control which class instances are picked
in a mini-batch. This raises the chances of getting False
Negative (FN) picked as the negative samples, as illustrated
in Figure 5. Earlier domain adaptation methods for consumer
datasets does not deal with this problem because consumer
datasets are usually nearly balanced. On the other hand, RS
datasets are often dominated by some major classes that
require extra effort to gain optimal results. The number of
false negatives (FNs) increases as we increase the number of
negative samples in a mini-batch.

DCL = −log
1
M

∑M
i=1 exp(sim(Q,K+

i )/τ)∑N
j=1 exp(D_K−

j /τ)
(3)

In this light, we propose to filter out negative samples with
high similarity scores with the query sample. In Figure 5,
three out of four images have a similarity score below 0.2
and one image is highly similar to the query image. Debiased
Contrastive Learning (DCL) in Equation 3 summarizes the
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process. First, reject the false negative case that 70% matches
the query. Next, replace the value with the remaining average
score in the mini-batch for better consistency and stable
learning. Here, DK−

j is calculated using below formula,

DK−
j =

{
sim(Q,neg), if sim(Q,neg) ≤ 0.7 ∗ sim(Q, pos)

Avg.(sim(Q,negs)), otherwise

Fig. 6: Clustering visualization for pseudo labeling in 12,000
features over 10 classes of DOTA dataset.

Class Name # of Ins. # of Ins. # of Ins. # of Ins.
DIOR DOTA Visdrone UAVDT

Bridge 176 1039 - -
Vehicle 2079 85479 - -
Harbor 254 5704 - -

Storage.T 2623 5416 - -
Baseball 250 516 - -

Car - - 14064 222650
Track 138 417 - -

Basketball 171 358 - -
Tennis 580 1662 - -
Truck - - 750 4979

Stadium 40 393 - -
Bus - - 251 6553

Airport 25 153 - -

TABLE I: Instance distribution statistics (Test Set) of the
DIOR [9], DOTA2.0 [49], [50], Visdrone [51], and UAVDT
[52] datasets over different categories.

D. Debiased Local Contrastive Learning

Local adaptation is a class-agnostic adaptation because we
extract features at the pixel level of the source and target
domain. From the architecture of our proposed model in Figure
4, we can see that the first step toward local domain adaptation
is to generate synthesized images from both source (S) and
target (T ) images in a mini-batch. For that, we use CycleGAN
and pass both source and target image to generate translated
source (S′) and translated target (T ′), respectively. Then,
pass S, T ′, T, S′ to the backbone for feature extraction. Local

features are saved from the earlier layers of the backbone
in the dimension of 256 × 100 × 100. Next, pass parts into
the bottleneck block, which reduces the feature dimension
to 32 × 100 × 100, where dimensions are C, W, and H,
respectively. Finally, we feed the output of the bottleneck layer
to the Multi-Layers-Perceptron (MLP) block and transform the
final feature vector with a length of 1024. The minimal size
of each feature reduces the necessity of GPU memory.

Lets represent the local features from the S, T ′, T and S′

as αS
i , αT ′

i , αT
i , and αS′

i , respectively. Where i is the index
of the mini-batch. As we are going to perform bi-directional
adaptation, for the adaptation of the S and T ′, we select
a local feature αS

i ∈ αS as a query and choose different
augmentations of the corresponding feature from αT ′

i ∈ αT ′

as the positive cases. On the other hand, negative cases are all
other local features αT ′

j ∈ αT ′
in the mini-batch, where j ̸= i.

The bi-directional local contrastive loss between (S and T ′)
and (T and S′) can be calculated from the Equation 4 and 5.

DCLS,T ′

local = −log

1
µ

∑µ
m=1 exp(sim(αS

i , α
T ′

m )/τ)

D(
∑ν

j=1 exp(sim(αS
i , α

T ′
j )/τ))

−log

1
µ

∑µ
m=1 exp(sim(αT ′

i , αS
m)/τ)

D(
∑ν

j=1 exp(sim(αT ′
i , αS

j )/τ))
, j ̸= i (4)

DCLT,S′

local = −log

1
µ

∑µ
m=1 exp(sim(αT

i , α
S′

m )/τ)

D(
∑ν

j=1 exp(sim(αT
i , α

S′
j )/τ))

−log

1
µ

∑µ
m=1 exp(sim(αS′

i , αT
m)/τ)

D(
∑ν

j=1 exp(sim(αS′
i , αT

j )/τ))
, j ̸= i (5)

In the above Equation 4 and 5, D stands for Debiased, m
denotes the mth augmentation out of µ number of augmenta-
tions for a particular image. Finally, the number of negative
examples drawn from a mini-batch is denoted with ν. The total
bidirectional local domain adaptation loss can be formulated
by accumulating the loss for all query images in a mini-batch,
as follows:

DCLlocal = W1 ∗DInfoNCES,T ′

local+

W1 ∗DInfoNCET,S′

local (6)

E. Debiased Global Contrastive Learning

Global domain adaptation focuses more on the abstract view
of object features. Global image features are collected from
the last layer of the backbones; by this, we get features with
very high details on lower spatial resolutions. Like the local
adaptation, we also pass these 256×25×25 to the bottleneck
layer and reduce the dimension to 3× 25× 25. Next, features
are fed to the MLP block, and a feature vector with 1024
dimensions is computed. Following the same notational format
from previous section III-D, we can define the global features
from the S, T ′, T and S′ as βS

i , βT ′

i , βT
i , and βS′

i , respectively.
Again, i is the index number in a mini-batch. So, the bi-
directional global contrastive loss between (S and T ′) and
(T and S′) can be presented as in Equation 7 and 8.
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DCLS,T ′

global = −log

1
µ

∑µ
m=1 exp(sim(βS

i , β
T ′

m )/τ)

D(
∑ν

j=1 exp(sim(βS
i , β

T ′
j )/τ))

−log

1
µ

∑µ
m=1 exp(sim(βT ′

i , βS
m)/τ)

D(
∑ν

j=1 exp(sim(βT ′
i , βS

j )/τ))
, j ̸= i (7)

DCLT,S′

global = −log

1
µ

∑µ
m=1 exp(sim(βT

i , β
S′

m )/τ)

D(
∑ν

j=1 exp(sim(βT
i , β

S′
j )/τ))

−log

1
µ

∑µ
m=1 exp(sim(βS′

i , βT
m)/τ)

D(
∑ν

j=1 exp(sim(βS′
i , βT

j )/τ))
, j ̸= i (8)

The total bidirectional global domain adaptation loss can be
formulated by accumulating the loss for all query images in a
mini-batch, as follows:

DCLglobal = W2 ∗DCLS,T ′

global +W2 ∗DCLT,S′

global (9)

F. Debiased Instance Contrastive Learning

Local-Global (LG) contrastive learning helps to create do-
main invariant features as shown in Figure 3; it is visible in
the figure that Image-Level adaptation can remove the domain
boundary and create a uniform domain feature space for source
and target datasets. No class discrepancy is maintained at the
image level alignment, and there is an overlap between the
different class instances in the feature space. To solve this
issue, we propose to perform debiased instance contrastive
learning for the source and target dataset and achieve class
discrepancy in features. The effect of this learning is illustrated
in Figure 3, where we can see a moderate separation line
between the two classes.

Instance-level features are extracted from the RPN and fed
into the instance domain adaptation block. It is important to
note that we do not perform strong feature alignment for
samples near the decision boundaries. Instead, we perform
weak feature alignment to maintain classwise discriminant in
visual features. Instances near decision boundaries may look
very similar but belong to different classes.

Notation for the source region proposals is ΓS
i and for

the target region proposals is ΓT
i . The corresponding class

set for the source is CS
i , and for the target is CT

i ; i is
the proposal index among P proposals. For instance-level
contrastive learning, the formula can be formulated from
Equation 10 and 11.

DCLS
Ins = −log

1
µ

∑µ
m=1 exp(sim(ΓS

(qc,i),Γ
S
(pc,m))/τ)

D(
∑ν

n=1 exp(sim(ΓS
(qc,i),Γ

S
(nc,n))/τ))

,

i ̸= m and i ̸= n
(10)

DCLT
Ins = −log

1
µ

∑µ
m=1 exp(sim(ΓT

(qc,i),Γ
T
(pc,m))/τ)

D(
∑ν

n=1 exp(sim(ΓT
(qc,i),Γ

T
(nc,n))/τ))

,

i ̸= m and i ̸= n
(11)

Equation 10 and 11 represent the source and target instance
loss, respectively. Here, µ and ν stand for the number of
positive and negative samples, respectively, and i stands for
ith ∈ theP proposal in the proposal set P. We define the
class id of the query, positive and negative samples using
qc, pc, and nc, respectively. The total instance contrastive loss
can be formulated by accumulating the loss for all region
proposals in a mini-batch, as follows:

DCLIns = W3 ∗DCLS
Ins +W3 ∗DCLT

Ins (12)

Also, confidence tends to be less reliable at the early stage
of the adaptation. The feature quality and objectness score
from the RPN for the target dataset is generally less reliable
due to the large domain gap. In this light, we use weights
W1,W2, and W3 in Equation 6, 9, and 12, respectively, to
perform progressive adaptation and give less weight during
the early stage of transformation, and progressively increase
the focus with an increased object confidence score and
quality features. Earlier works show local and global domain
adaptation works well with an initial weight of 0.1, so we
keep W1 and W2 = 0.1. For the instance domain adaptation,
we tried different values of W3 as presented in Table VII.
However, the optimal result was achieved with an initial value
of 0.01. The total loss for the detection and adaptation process
can be calculated by summarizing all loss components outlined
in Equation 13.

TotalLoss = SWFL(x, pt, y) +DCLlocal +
DCLglobal + DCLIns (13)

IV. EXPERIMENTS

This section evaluates our proposed debiased contrastive
learning model against current state-of-the-art domain adap-
tation methods on four remote-sensing image datasets. The
experimental setup is described in Section IV-A, the com-
parison findings are summarized in Section IV-D, and the
extensive ablation studies over different factors and parameters
are outlined in Section IV-F.

A. Implementation Details

Implementation We use the object classification pipeline
similar to [43]: Darknet53 as the backbone as it is shown
to preserve semantic information from the small objects than
the residual-based feature extractor networks [27], [55]; RPN
heatmap-based approach to identify dense small objects and
remove NMS; and the detection block is Faster-RCNN [56].
We have used Python with PyTorch as the deep learning
framework to implement the project. Our code implementation
is heavily based on an open-source computer vision library
Detectron2 [57] and some part of SOD [30] implementations.
With debiased contrastive learning, we implemented three new
DA modules for local, global, and instance domain adaptation.
Also, we implemented a Cythonized K-means++ that is much
faster than the Python implementation, and the clustering time
is recorded in Table IX.
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Fig. 7: Detection results from DIOR (Source) and DOTA (Target) dataset using our DCLDA method.

Method Detector+ Bridge Vehicle Harbor Storage Baseball Track B.Ball Tennis Stadium Airport DIOR
→

DOTA

Backbone Tank Field Field Court Court mAP mAP

Baseline [26] CenNet2
ResNet-50

10.1 9.7 46.7 42.9 50.1 34.9 49.3 77.6 0.0 33.0 66.6 35.4

MGADA [53] FCOS VGG-16 13.3 11.3 46.8 47.2 47.4 38.4 50.0 85.8 0.0 37.0 68.2 37.7
SAPNET [54] FCOS ResNet 7.8 9.2 18.1 20.2 35.5 24.7 29.2 74.7 0.0 19.3 55.1 26.5
MGADA [53] Faster-RCNN

ResNet-101
15.9 12.0 50.7 46.5 47.6 39.3 52.3 89.6 0.0 37.9 73.1 39.2

SIGMA [39] FCOS
ResNet50

27.0 32.6 64.5 65.0 55.4 56.6 62.3 91.9 1.3 34.7 77.2 47.1

ConfMix [38] YOLOv5 CSP
Darknet53

27.2 32.0 65.9 65.1 56.3 56.3 61.5 93.5 1.0 34.9 78.8 47.4

DCLDA* CenNet2
ResNet-50

27.0 28.7 68.1 66.6 52.4 51.1 63.0 90.2 5.6 36.0 81.4 49.1

DCLDA CenNet2 CSP
Darknet53

30.1 28.8 70.0 65.8 55.4 52.5 62.2 93.2 7.9 37.3 82.7 50.6

Oracle Baseline 46.4 40.1 83.1 65.8 64.4 60.0 77.7 94.9 27.2 54.3 62.7 62.8

TABLE II: Classwise performance comparisons (mAP) for DIOR → DOTA benchmark(IOU=0.5), as measured both on the
DIOR (source) and on the DOTA (target) datasets.

B. Hyper-parameter Settings

In CycleGAN network [58], load 800 and crop 640 were
used for the data augmentation. To train our DCLDA model,
we have resized all images to 800× 800 pixels and set eight
as the mini-batch size in each epoch. So, in total, we send
8 × 4 = 32 images in a mini-batch to train the DCLDA
model. Pytorch color-jitter augmentation technique was used
to create multiple augmented copies of the synthesized
images for image-level contrastive learning positive cases.
During the support-guided pseudo labeling, we chose five
samples (n) per class and created the 5-shot support set. For

the feature curation, we tried different values as the cosine
similarity threshold and found that 70% cosine similarity
threshold achieves optimal performance across most of the
experiments. Other important hyper-parameters were set:
IOU=0.5, NMS=0.6, L.Rate=0.003, POST_NMS_TOPK for
IDA=64 and POSITIVE_FRACTION=0.40. We have used
NVIDIA 2 x RTX 6000 GPU with 49 GB of memory, 11th

generation Intel® CoreTM i9-11900K @ 3.50GHz × 16 CPU,
and 167GB of system memory to carry out all experiments.
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Fig. 8: Detection results from Visdrone (Source) and UAVDT (Target) dataset using our DCLDA method.

C. Datasets and Evaluation Metrics

DIOR data set originally consisted of 24,500 Google Earth
images from 80 countries. After selecting only common
classes, the reduced dataset has 11,402 images. The images
varied in quality and were captured in different seasons and
weather conditions. The number of pictures in the training
set is 10,888; in the testing set, we have 512 images. DOTA
dataset comprises 2,430 overhead images with image sizes
ranging from 800×800 to 29, 200×27, 620 pixels. The ground
sample distance (GSD) in the data set ranges from 0.1 to 0.87
m, and each image contains an average of 220 objects. For
experiments, we split high-resolution images into patches of
size 1024 × 1024 pixels with an overlap of 200 pixels. Con-
sidering only the common ten classes, the DOTA2.0 training
set has 11,551 images, and the testing set has 3,488 images.
Visdrone is a UAV dataset containing over 10,000 image
frames from more than 6 hours of videos, making it one of

the largest drone datasets available. The experimental dataset
includes three common object categories, and the images have
different resolutions ranging from 540p to 1080p. The training
and testing set contains 6883 and 546 images, respectively.
UAVDT dataset contains over 80,000 frames in 179 videos
captured by UAVs, making it one of the largest datasets
available for object detection. The experimental dataset con-
tains 10,000 images with three object categories with different
image resolutions ranging from 540p to 1080p. The dataset
covers various weather conditions, including sunny, cloudy,
and rainy. The → symbol is illustrating the direction of domain
adaptation: source → target.
Evaluation Metrics. To assess the effectiveness of our pro-
posed approach in the target domain, we measure its Precision,
Recall, and Average Precision (AP) by considering both pre-
cision and recall for each object category. The Mean Average
Precision (mAP) is then calculated as the average AP across all
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Fig. 9: Comparison of SOTA methods with our DCLDA method. In this figure, we present the comparison across different
methods and datasets to illustrate the effectiveness of our model. The green boxes denote true predictions, and the yellow
boxes denote missed detections.

Method Car Truck Bus VISDRONE → UAVDT

Baseline [26] 34.2 7.6 29.3 48.1 26.4
MGADA [53] 42.0 15.6 36.4 51.9 31.3
SAPNET [54] 31.5 7.9 22.7 26.3 20.8
MGADA [53] 39.2 12.6 35.8 54.6 29.2
SIGMA [39] 50.1 20.9 45.5 46.3 38.9
ConfMix [38] 51.3 20.4 46.0 46.5 39.4

DCLDA* 52.5 23.0 41.1 58.4 38.8
DCLDA 54.2 24.4 46.3 59.2 41.5

Oracle 72.4 37.8 60.5 45.6 56.9

TABLE III: Classwise performance comparisons (mAP) for
VISDRONE → UAVDT benchmark(IOU=0.5).

object categories. The mAP for all experiments was calculated
with an IOU of 0.5 at the Non-Maximal suppression stage.

Method Curation DIOR → DOTA VISDRONE → UAVDT
mAP mAP mAP mAP

w/o IDA NA 84.2 42.7 58.4 36.1
w/ IDA - 82.7 47.8 56.0 40.1
w/ IDA ✓ 83.4 50.6 58.2 41.5

TABLE IV: Source and target detection performance (mAP)
with(w/) and without(w/o) Instance Domain Adaptation (IDA).

D. Method Performance Comparisons

We compare our DCLDA method with several current state-
of-the-art techniques for the adaptive object detection task
on two high-variability video image datasets and two high-
variability image datasets. Specifically, we have used the
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DIOR → DOTA Visdrone → UAVDT
# neg # pos mAP mAP mAP mAP

4 1 77.3 46.5 53.7 38.0
4 2 78.2 48.2 53.1 39.9

15 8 80.5 47.4 55.6 38.3
7 4 82.7 50.6 59.2 41.5

TABLE V: Quantitative performance comparisons (mAP) from
DCLDA model for various negative and positive case values.

CenterNet2 [26] as the source-only baseline, which is trained
only with labeled source data, serving as the performance
lower-bound for comparisons. On the other hand, the oracle
method is trained with labeled target data, serving as the
performance upper-bound. We have used feature alignment
DA methods such as MGADA [53] and SAPNet [54], a
spatial attention-based domain adaptation network for the per-
formance measurements. A novel SemantIc-complete Graph
MAtching (SIGMA) method [39] is also introduced in the
model comparison to have better diversity in the plans. Finally,
we introduced ConfMix [38], a sample mixing-based paradigm
of DA for state-of-the-art comparisons. Figure 7 present the
qualitative analysis and the detection performance of DCLDA
trained on DIOR source data and tested on the DOTA target
dataset. In detection figures, we illustrate the ground truth,
foreground-focused saliency map, and object detection for
different samples. It is evident from Figure 7 that our DCLDA
model well-adopted the variation in lighting conditions, object
sizes, and foggy-weather conditions between source and target
datasets.Table II presents the quantitative performance com-
parison for DIOR and DOTA satellite images datasets. This
table shows classwise performance for the target dataset and
overall performance for both source and target datasets. We
can see from Table II that our baseline method achieves mAP
of 66.6 and 35.4 in the source and target datasets, respectively.
We improve the baseline model with Image-level local and
global domain adaptation and pseudo-labeling-based instance
adaptation, which helps us to outperform other state-of-the-art
models by a minimum margin of 3.2 % on the target dataset.
Moreover, the gap between the DCLDA and Oracle results
is now narrowed to 12.2% from 27.4%. From the classwise
performance, we notice that while other methods ultimately
failed to affect the stadium class, our DCLDA method showed
a significant gain of 7.9% mAP of this particular class. It is
also visible that CSP-Darnet53 can perform better than the
ResNet50 model with +1.5% of target mAP improvement.
Finally, the precision, recall, and F1 scores are presented in
Table VIII.

The Visdrone and UAVDT video datasets are two high-
variability videos captured from UAV in Table III. The
qualitative analysis of Visdrone and UAVDT datasets are
presented in Figure 8, respectively. Visdrone and UAVDT
pose critical domain gaps due to illumination, low light, and
foggy conditions. Figure 8 shows samples with shadows due to
high buildings and sunlight angles. Additionally, we see some
samples where the objects are overexposed with traffic lights,
and some are underexposed due to low illuminations. It can

Method # of Params. GFLOPS # of Layers

SIGMA 45354466 33.5 321
MGADA Step 1 66974671 26.9 119
MGADA Step 2 66974671 26.9 119
ConfMix Step 1 7057387 16.1 270
ConfMix Step 2 7047883 15.9 213
DCLDA 53592866 34.8 196

TABLE VI: Multi-factor computational cost comparison be-
tween our proposed DCLDA and recent SOTA methods.

be seen from Figure 8 that our proposed DCLDA can tackle
all these critical scenarios and detect objects successfully.
Next, we evaluate the target dataset performance over three
different categories. We have not only shown excellent perfor-
mance on the target dataset but have also achieved a 59.2%
mean average precision (mAP) (see Table III) on the source
dataset, which is noteworthy. Our baseline method trained on
only source data gives 26.4% of mAP, whereas our DCLDA
method achieves 41.5% of mAP using debiased contrastive
learning and pseudo labeling. Also, we have a +2.1% gain
margin compared to the best state-of-the-art ConfMix method.
Moreover, using debiased contrastive learning, we could shrink
the performance gap between the oracle and our model from
30.5% to 15.4% compared to the baseline model. Table III.
Table III also demonstrates that a well-designed backbone can
enhance performance by around +2.7% on the video target
domain with dominated dense objects.

Method CGAN LDA GDA IDA DOTA UAVDT
Baseline 35.4 26.4
w/CGAN ✓ 37.2 27.8
w/LDA ✓ ✓ 41.6 30.2
w/GDA ✓ ✓ 44.5 34.6
w/IDA ✓ ✓ 46.9 36.8

DCLDA W3= 0.01 ✓ ✓ ✓ ✓ 50.6 41.5
DCLDA W3= 0.1 ✓ ✓ ✓ ✓ 48.2 37.9
DCLDA W3= 0.5 ✓ ✓ ✓ ✓ 42.5 30.3

TABLE VII: Ablation study for different modules of our
DCLDA method. Here, CGAN= CycleGAN Transfer Learn-
ing, LDA= Local domain adaptation, GDA= Global domain
adaptation, and IDA= Instance-level domain adaptation.

In Figure 9, we present a qualitative analysis of DCLDA
with other competitive SOTA methods. The green boxes
denote correct foreground object detection, and the yellow
boxes refer to missed object detection. From Figure 9, we can
see that our DCLDA performs significantly better in detecting
challenging small and dark objects. However, we found some
missing detection from DCLDA when the object has a uniform
color distribution(e.g., Green Field or Tennis Court). On the
other hand, the SIGMA, MGADA, and ConfMix methods can
do well on regular-sized objects, but we can find that there are
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still several false alarms in the detection results, as they fail
to align the source and target domain properly.

Finally, each dataset’s precision, recall, and F1 scores are
presented in Table VIII. We compared the performance of
our DCLDA with the best competitor, ConfMix. We achieved
better precision and recall for most datasets, except for DOTA,
where ConfMix slightly outperforms DCLDA. We can also
verify the recall performance from Figure 7 - 8, which shows
the foreground detection results from experimental datasets.

E. Computational Cost Comparisons

The domain adaptation methods are well-known for their
high computational cost (see Table VI). However, carefully
designing the gradient computation tree helps our DCLDA
method maintain reasonable computational stability with op-
timal detection performance. Table VI presents a computa-
tional comparison between the proposed and some closely
competitive SOTA models. Among the models, our DCLDA
and SIGMA are end-to-end trainable models. On the other
hand, ConfMix and MGADA are 2-step trainable methods.
The MGADA is the most computationally expensive model,
with 53.8 GFLOPS, whereas the ConfMix is the most compu-
tationally efficient, with 32 GFLOPS. Although our DCLDA
requires 34.8 GFLOPS, it outperforms the ConfMix method
in object detection tasks by 3.2% and 2.1% for DOTA and
UAVDT target datasets, respectively. To reduce the learnable
parameters and GFLOPS, we turn on gradient updates only
for the query vectors and no gradient updates for positive
and negative vectors during contrastive learning. Also, we
sub-sample the positive and negative keys throughout all
contrastive learning to reduce training time and computation
cost further. The training time for confMix and DCLDA is
12.3 hours and 13.4 hours, respectively, for 50 epochs. So, we
can conclude that exploring contrastive learning for DA tasks
is computationally convincing with the careful design of the
gradient computation graph.

F. Ablation study

In this section, we answer several questions. The first one is:
Does the Instance-level adaptation help on target data?. Table
IV shows that the instance domain adaptation improves mAP
7.9% and 5.4% recorded for the DOTA and UAVDT target
datasets, respectively. The performance on the source dataset
dropped slightly by 1.5% for the DIOR dataset after IDA (w/o
curation) due to the increased number of loss functions and
noise from target instance labels. When we used the support
set to cure the noisy features and guide the IDA process, we
gained higher mAP in the target dataset. We could recover
from the source dataset performance drop (See Table IV).
The second question we want to answer is, how much we
benefit from using multiple positive cases? We claim that the
single sample of positive cases for contrastive learning does
not work for high variability overhead videos and imagery.
Table V illustrates the performance gain, and even for two
positive samples, improves the overall performance by roughly
2.0% for both target datasets.

More positive and negative examples can introduce more
noise and ultimately hamper the results, as illustrated in Table
V for 15 negative and eight positive cases. The study found
using seven negative and four positive points gives the optimal
results for each dataset. The third question is: How many
clusters do we set for pseudo labeling? and Table IX shows
that pseudo labeling with five clusters for DOTA and two for
UAVDT can achieve up to 7.5% and 5.8% increase, respec-
tively. Table I shows that five significant classes dominate the
DOTA dataset labels. For UAVDT, a single class with two
minor classes separates the dataset into two clusters for target
labeling.

Finally, we answer the efficacy of different modules of the
proposed DCLDA model. Table VII shows that each integrated
module has some performance gain in our target dataset.
We recorded the mAP performance against the experimental
dataset. We first integrated CycleGAN-based synthetic image
for transfer learning, and we can see that it gains +1.8% and
+1.4% mAP on DOTA and UAVDT datasets, respectively.
Next, we integrated three contrastive learning modules (e.g.,
LDA, GDA and IDA) incrementally, and the performance is
presented in Table VII. Integrating the IDA module obtains
the best performance gain. The proposed model gains +11.5%
and 10.4% increase in the mAP on the DOTA and UAVDT
datasets, respectively. Finally, we combined all proposed mod-
ules in our DCLDA architecture and ran experiments with dif-
ferent hyperparameter values (W3). DCLDA is very sensitive
to W3, and we noticed a significant performance drop when
weighing the IDA close to 50%. The optimal performance on
both target datasets was recorded by carefully selecting all
hyperparameters and setting W3 equal to 0.01 or 1%.

V. CONCLUSION

This paper proposes specialized contrastive learning with
Support-Set guided pseudo-labeling for the unsupervised do-
main adaptation task. We show that remote-sensing video
frames and images have significant domain shifts due to light-
ing conditions, weather changes, and geographical variance.
Careful design of the detection pipeline and instance-aware do-
main adaptation method is required for optimal performance.
Our proposed contrastive learning method consists of two
significant improvements. The first is the debiased contrastive
learning to remove false negative samples using the classwise
probability logits. The second introduces multiple augmented
positive cases for more stability from object size and scale
variation over images and datasets. Next, we show that a faster
and support-guided pseudo-labeling technique can improve
the target instance learning performance by eliminating noisy
object features with little training time overhead. Specifically,
our method takes only a second to label 4000 target features
in a mini-batch. Finally, we validate our approach in four
challenging high-variability datasets that showed significant
performance gain over available state-of-the-art methods. For
the UAVDT and DOTA target dataset, we outperformed the
latest state-of-the-art ConfMix method by +2.1% and +3.2%
mAP, respectively. We hope our work can inspire future
exploration of domain adaptation tasks in RS imagery using
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Precision Recall F1
Dataset DIOR DOTA Visdrone UAVDT DIOR DOTA Visdrone UAVDT DIOR DOTA Visdrone UAVDT

ConfMix 80.1 62.7 68.4 44.8 75.5 48.8 50.2 46.3 77.7 54.4 57.9 45.7
DCLDA 85.9 65.0 72.3 47.4 78.5 48.5 53.4 50.6 82.0 55.5 61.4 48.9

TABLE VIII: Comparison of Precision, Recall, and F1 score between the closest SOTA competitor and our proposed model
for the experimental datasets.

Method Cluster # Cluster # Total DOTA UAVDT
DOTA UAVDT Time(s) (mAP) (mAP)

Without Target - - - 43.1 35.7
Labeling
K-means++ 2 1 0.3 48.4 39.1
K-means++ 5 2 1.10 50.6 41.5
K-means++ 10 3 2.94 44.0 37.2

TABLE IX: Target detection performance(mAP) with/without
Aggregated Pseudo Labeling, clustering time, and the number
of clusters. The clustering time is given for a mini-batch of
4000 features from both target datasets.

debiased contrastive learning. In the future, we plan to make
the model more computationally efficient and further pursue
the category imbalance problem in RSIs for improved detec-
tion performance. Besides, we plan to introduce the first-ever
multimodal image-text-based domain adaptation pipeline for
RSI imagery.
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